Readout Parameter Access Code

An access code must be entered before machine-related parameters can be set or changed. This prevents inadvertent adjustments to the setup parameters.

<table>
<thead>
<tr>
<th>IMPORTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The access code is 8891</td>
</tr>
</tbody>
</table>

Refer to the Setup section. Begin by pressing the SETUP key. When “SETUP” is displayed, press the 8, 8, 9, 1, and ENTER keys. The readout is now ready for machine parameter setting operations.

<table>
<thead>
<tr>
<th>IMPORTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisors may wish to remove this page from the Reference manual after initially setting up the readout system. Retain in a safe place for future use.</td>
</tr>
</tbody>
</table>
Warranty

ACU-RITE Products and accessories are warranted against defects in material and workmanship for a period of three years from the date of purchase. ACU-RITE will, at its option and expense, repair or replace any part of the ACU-RITE product that fails to meet this warranty. This warranty covers both materials and factory labor. In addition, authorized ACU-RITE service representatives will provide service labor (field service) for a period of one year at no charge. Notice of the claimed defect must be received by ACU-RITE within the warranty period.

This warranty applies only to products and accessories installed and operated in accordance with this reference manual. ACU-RITE shall have no obligation, with respect to any defect or other condition caused in whole or part by the customer’s incorrect use, improper maintenance, modification of the equipment, or by the repair or maintenance of the product by any person except those deemed qualified by ACU-RITE.

Responsibility for loss of operation or diminished performance due to conditions beyond ACU-RITE’s control cannot be accepted by ACU-RITE.

The foregoing warranty obligations are in lieu of all expressed or implied warranties. ACU-RITE INCORPORATED shall not be liable under any circumstances for consequential damages.

30 Day Red Carpet Warranty

All ACU-RITE products are covered by a 30-day Red Carpet Warranty. If in the first 30 days this product fails for any reason, repack it in the original packing materials and contact your Authorized ACU-RITE Distributor for return procedures.
Table of Contents

Introduction

- A Tour of the Readout 1
- Front and Back Views 1
- Keypad 2
- Displays .. 3

Power-On Position Recovery .. 4
- Position-Trac .. 4

Readout Operations .. 5

- Clear Key ... 5
- Absolute and Incremental Displays .. 5
 - Absolute Display .. 5
 - Incremental Display ... 5

Zeroing the Displays .. 6
- Absolute Zero ... 6
- Moving the Absolute Zero ... 8
- Zeroing at a Center Line .. 9
- Incremental Zero ... 9

Presetting .. 10
- Absolute and Incremental Presets .. 11
- Center-line Presets .. 12

Near Zero Warning ... 13

Centerlines .. 13

Bolt Hole Patterns .. 14
- Defining the Bolt Hole Pattern .. 14
- Using the Result ... 15

Tool Offset ... 16
- Defining the Offset Direction .. 16
- Using Tool Offsets .. 17

Setup .. 18

Machine-Related Setup Parameters .. 18
- Count Direction .. 18
- Tool Offset Direction .. 18
- Encoder Resolution .. 18

Job Setup Parameters .. 19
- Display Resolution ... 19
- Scale Factor .. 19
- Near Zero Warning .. 19
- Bolt Circle Definition .. 20
- Linear Error Compensation ... 20
- Edge Finder Diameter ... 21

Installation .. 22

Readout Specifications .. 25

Troubleshooting ... 26
This symbol alerts you to the fact that important information concerning the installation and operation of this readout has been included in this manual.

Keep these instructions in a secure place for future reference.
Introduction

ACU-RITE’s DRO 200 readout series provides application-specific features required for you to obtain the most productivity from your manual machine tools.

The DRO 200M is designed specifically for milling and drilling applications. Special features include an easy to use bolt hole routine, centerline locating, and quick tool offsetting.

A Tour of the Readout

Front and Back Views
Keypad

- Selects absolute or incremental display
- Used to locate centerlines
- Compensate for tool diameter
- English / metric conversion
- System setup parameters
- Enter all numeric values with these
- Begin a preset
- Zero an axis display
- Use these to define a bolt hole pattern, and use the calculated hole positions.

ACU-RITE®
Displays

At the top of the display window is a row of indicators. These tell you the current state of the readout.

- **ZERO**: Appears when setting an absolute zero.
- **SET**: Lets you know when you are setting a preset or an absolute zero.
- **C/L**: Tells you when the centerline function is active.
- **MM**: Appears when you’re positioning in metric, dark when you’re positioning in inches.
- **INCR** and **ABS**: These tell you if the position display is incremental or absolute. They also refer to the type of preset.

In addition to the lighted indicators along the top of the display, the top axis display will scroll longer messages that will help you step through some of the procedures.
Power-On Position Recovery

Position-Trac

Certain ACU-RITE encoders, such as the ENC 150, contain closely spaced reference marks that enable the display to show the correct position after a power interruption. The readout will indicate when power has been lost, and will prompt you to move each axis until a reference mark is located. By traversing the reference marks once in each axis, you will re-establish the display position relative to the last known zero. The most you will ever have to move an axis is about one inch. You must move in a positive count direction. A flashing decimal point will indicate that the last position has not been recalled.

If you use an encoder without Position-Trac, the procedure for recovering your position is slightly different. Reference marks on these encoders are about 8” apart. You must find a convenient reference mark and then use the same mark every time.

1. Move near the desired reference mark.

2. Press and hold the ABS INCR key until the decimal point starts to flash.

3. Move slowly past the reference mark until the readout recalls its position. You must move in a positive count direction.
Readout Operations

Clear Key

Use the **CLEAR** key to erase digits that you entered by mistake, or to take you back if you’ve pressed a wrong function key.

Absolute and Incremental Displays

Absolute Display

Shows the distance from your current position to *absolute zero*.

![Absolute Display Diagram]

Incremental Display

Shows the distance from your current position to *incremental zero*. An incremental zero is set when you preset a dimension, or when you zero the incremental display.

![Incremental Display Diagram]

Automatic Display Switching

Sometimes the readout will switch from one display to the other automatically. When you enter a preset, for example, the display switches to the incremental display so that you can move to zero. Whenever the readout does an automatic display switch, **INCR** will appear briefly in the display.
Zeroing the Displays

Absolute Zero

On many prints, dimensions are measured from one or two surfaces of the workpiece. By setting the readout’s absolute display to zero at a well-chosen surface, you can enter the part’s dimensions directly from the print, using absolute presets.

Setting Absolute Zero at the Current Position

1. Move to desired location.

2. Make sure that the absolute position is displayed.

3. Zero the appropriate axis.

Setting Absolute Zero Using an Electronic Edge Finder

1. Install the edge finder into the spindle and connect it to the readout.

2. Make sure that the absolute position is displayed.

3. Press the ZERO key for the appropriate axis.

4. Move slowly until the edge finder touches the edge of the workpiece. The absolute position display will automatically be set to zero at the workpiece edge.

You don’t have to worry about overtraveling because the edge finder probe shaft is flexible. The readout will zero on contact.
Setting Absolute Zero with a Tool

1. Touch the tool to the edge of the workpiece.

2. Make sure that the absolute position is displayed.

3. Press the [ZERO] key for the appropriate axis.

4. Enter the position of the tool center.

 +/- . 1 2 5 ENTER

Setting Absolute Zero Using a Tool Offset

1. Enter the tool’s diameter.

2. Make sure that the absolute position is displayed.

3. Identify the right edge of the tool.

4. Touch the tool to the X=0 edge of the workpiece and press the [ZERO] key for the appropriate axis.

 Shortcut [ZERO] [ENTER] [ZERO] [ZERO]
Moving the Absolute Zero

Sometimes you may need to move the absolute zero from its original position on the workpiece to a different position.

1. Move the tool to absolute zero.

2. Press the ZERO key of the appropriate axis and enter the new tool position, from the new absolute zero.
Zeroing at a Center Line

Begin setting absolute zero in the usual way and then tell the readout that you want to use the centerline feature.

Touch the first edge...

...then the second edge.

The absolute zero is placed mid-way between the two edges.

Incremental Zero

From the incremental display, press the ZERO key. This sets the incremental display to zero at the current tool position.
Presetting

When you preset a dimension, the readout places an incremental zero at the location you specify. Then the display automatically switches to the incremental display so that you can move to zero.

Begin a preset by pressing an axis key (X for example). The information of the previous preset will appear. The display will show you if the preset is absolute or incremental. Use the ABS INCR key to toggle between them.

Preset the absolute location of the hole.

```
X 1 . 6 2 5 ENTER
```

Now the drill is 1.625 on the negative side of the hole.

Incremental zero: the incremental display will read 0.000 when the drill is positioned over the hole.
Absolute and Incremental Presets

To maintain the best tolerance and to minimize the chance for errors, use

- absolute presets for absolute dimensions
- incremental presets for incremental dimensions.

When you enter an absolute preset, it does not matter where the tool position is. The DRO 200M calculates the desired location automatically.

When you enter an incremental preset, the tool must be positioned at the location you are dimensioning from.
Center-line Presets

You can set a preset at the center of a workpiece, or in the center of a hole.

Move to the first edge…

Sets an incremental zero at the tool location.

…then to the second edge

Calculates the center, and sets an incremental zero in the middle.
Near Zero Warning

When you are moving to zero, the readout can “warn” you when you are getting close. This allows you to machine faster and avoid overshooting your desired location.

You can set the near zero range in Setup.

Centerlines

You will normally use the centerline function when you are doing a preset, to put an incremental zero at a centerline, or when you want to set the absolute zero at a centerline. Refer to page 12 for presetting to a centerline, and page 9 for setting absolute zero on a centerline.

At any other time, using the centerline function will divide the current position in half and display the result in the incremental display.
Bolt Hole Patterns

Calculating hole locations in a bolt hole pattern is a two-step process: defining the bolt hole pattern and using the results.

Defining the Bolt Hole Pattern

Press the DEFINE key. The readout will prompt you to enter information about the bolt hole pattern.

Number of holes: 8 ENTER

The maximum number of holes is 99.

Circle center, X-axis: 1 . 0 0 ENTER
Circle center, Y-axis: . 8 7 5 ENTER
Circle radius: . 6 2 5 ENTER

Starting angle of the first hole: ENTER
Ending angle of the last hole: ENTER

You can review the bolt hole pattern definition by pressing DEFINE and cycling through the parameters with the ENTER key.

If the bolt hole pattern is rotated from the 3 o’clock position, enter the start angle.

This 8-hole bolt hole pattern starts at 30°. Leave the end angle blank for a full (360°) pattern.
For partial bolt hole patterns, you need to enter an end angle.

This 5-hole bolt hole pattern starts at 30°, and ends at 210°.

Using the Result

After you have defined the bolt hole pattern, press the USE key to use the results. Each time you press USE, the readout displays the hole number briefly, then presets the X and Y location for that hole. All you have to do is move to zero and drill the hole.

The readout will remember the hole pattern until you change it. This means that you can return to any of the holes at any time—just press USE.

If you need to go to a specific hole, just enter its number after the USE key.
Tool Offset

If you enter the diameter of the cutting tool you are using, you don’t have to add or subtract the tool’s radius when you enter a preset. Just select which edge of the tool you want to compensate for, and the DRO 200M automatically adds or subtracts the tool’s radius.

Defining the Offset Direction

The symbols on the number keys indicate the offset directions—they represent a top view of the tool and the part edge.

Whenever the readout is displaying an absolute or incremental position, the number keys can be used for tool offset compensation. Just press the key corresponding to the edge of the tool whose position you want to display.
Using Tool Offsets

First enter the tool diameter.

```
TOOL DIA . 5 0 0 ENTER
```

Then select the edge you want to use for the axis you want to move.

If the right edge is at absolute zero-

![Right edge diagram]

Left edge

![Left edge diagram]

Center

Always use this when drilling.

While you are moving, the readout display will indicate if a tool is being compensated for.

```
Left edge Right edge Front edge Back edge
```

To check your tool compensation before you move, press TOOL DIA. Press it again to return to the position display.
Setup

The [SETUP] key lets you change the system parameters. Some of these parameters are job related, meaning that they may change from job to job. Others are machine related and should be set as part of the installation. The machine-related parameters can be accessed by pressing:

[SETUP] [] [Access Code] [] [ENTER]

Use the [X] key to move from one parameter to the next. After the last parameter, the [X] key ends the setup process and saves any changes. Use the [CLEAR] key to move back to a previous parameter.

Some parameters have choices. Use the [Y] key to cycle through the available choices.

At any time during setup, pressing the [SETUP] key will end the setup process and save the changes.

Machine-Related Setup Parameters

Count Direction

This determines which way is positive. Move each axis in the positive count direction. The display will show a 1 or a 2 depending on count direction. You can also change the count direction by pressing the [Y] key.

Tool Offset Direction

Move each axis in the direction that will make the tool edge contact a workpiece as shown here. The display will show a 1 or a 2 depending on offset direction. You can also change directions by pressing the [Y] key.

Encoder Resolution

Move each encoder until the readout senses and displays the resolution. You won’t have to move more than two inches. For encoders without Position-Trac, you need to enter the scale resolution. You can press the [Y] key to select from common choices, or you can use the keypad to enter the resolution directly.
Job Setup Parameters

Display Resolution

The display resolution will be the same as the encoder resolution. If the job tolerance is coarser than the encoder resolution (±0.005 for example), you can adjust the display resolution so you won’t be tempted to waste time by machining to a finer resolution. Use the \(Y \) key to cycle through all the possible choices. The choices available depend upon the resolutions of the scales.

Scale Factor

You can define a scale factor for each axis. The typical scale factor is 1.000, which means that the displayed dimensions are the actual part dimensions. A scale factor less than 1 causes the part to be smaller than the print dimensions; a scale factor greater than 1 causes the part to be larger.

For a scale factor that allows for 3% material shrinkage, use this formula:

\[
ScaleFactor = \frac{1}{1 - 0.03} = \frac{1}{0.97} = 1.0309
\]

Enter the factor by pressing 1 . 0 3 0 9

Additionally, a scale factor of \(-1.00\) will produce a mirror image of the part. You can both mirror and scale a part at the same time.

Near Zero Warning

Each axis has its own near zero range. You can activate or deactivate the near zero warning feature by pressing the \(Y \) key. When the warning is activated, you can enter the range. Refer to page 13.
Bolt Circle Definition

You can define the size of a bolt hole circle either by its radius or by its diameter. Use the Y key to toggle between radius and diameter.

Linear Error Compensation

The DRO 200M includes a linear error compensation feature that enables you to compensate for machine tool inaccuracies.

You can have up to three different compensation segments per axis. You will need either a dial indicator or an edge finder, along with a measurement standard.

1. Enter the number of intervals you will use. If you do not want to use any error correction, enter 0. Press X to start the first interval.

2. Position the standard in the center of the first segment.

3. Press Y

4. Enter one edge of the standard.

5. Enter the other edge of the standard.

6. Enter the actual size of the standard, including the probe diameter if necessary.

If the display shows all dashes, refer to “Display Overflow Errors” on page 30.
7. Press X for the next segment or, if all segments are done, the next axis.

Edge Finder Diameter

Enter the diameter of your electronic edge finder. You can use the MM key to select between English and metric units, depending on your edge finder.
Installation

IMPORTANT
Before installing the DRO 200M readout, record the serial number on the warranty card and return it to ACU-RITE INCORPORATED. The serial number label is located on the back of the readout.

Selecting a Location

Selecting a location for the readout is an important consideration for proper installation. Keep the following points in mind when selecting a safe and convenient location:

- The readout should be within reach of the operator for easy access to the keypad.
- The readout should be approximately at eye level.
- Avoid moving components or tools and minimize coolant splash or spray.
- The operating environment must be within the temperature range of 0° to 40°C (32° to 104°F) with a non-condensing relative humidity of 25% to 85%.

Proper Mounting

ACU-RITE has developed special mounting kits for the readout, which address the most common mounting requirements. Mounting kits include:

- Column and base machine mountings
- Hardware and mounting instructions

These kits are available from your factory authorized ACU-RITE Distributor or OEM/OEI.

If you fabricate a support device for the readout, it should be large enough and strong enough to accommodate the readout. It must also be stiff enough to minimize any vibration induced by machinery on the shop floor.
Connecting the Encoders

Insert the connector from each encoder into the mating connector on the back of the readout. Fasten it with a small screwdriver.

Encoder input 1 will be displayed in the readout’s top display, input 2 in the next display, and input 3, if any, in the bottom display.

Provide enough slack in the encoder cables to allow for full travel of all machine axes. Check that machine movements will not pinch the cables. Use the cable tie-down hardware kits supplied with the encoders to fasten the cables neatly to the machine.

Connecting a Ground Wire

Connect a ground wire from the terminal on the back of the readout to the machine. The machine should also be connected to a solid earth ground. If not, be sure that the readout is.
Checking Voltage and Connecting Power

CAUTION

Connecting the readout to a power source outside of the acceptable range, or making an inappropriate setting with the voltage selector, may damage the readout, the encoders, or both.

Check that the voltage available at the power source is within specification before connecting it to the readout. If required, set the voltage selector to match the line voltage.

1. Remove the caution label from the input module, and use a thin-blade screwdriver in the slot at the top of the power-input module to open the module cover.

2. Pull the selection block out.

3. Remove the fuse, move the shorting bar to the other side, install the correct fuse, and push the block back into place.

4. Close and snap the cover shut.

The voltage setting will show through the window in the voltage selector cover. Connect the readout to the power source using the power cord supplied.
Readout Specifications

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
</table>
| Operating conditions | 0° to 40°C (32° to 104°F)
25% to 85% relative humidity (non-condensing) |
| Storage conditions | -40° to 60°C (-40° to 140°F)
25% to 95% relative humidity (non-condensing) |
| Input requirements | Voltage: 115VAC or 230VAC (+/-20%), single phase
Frequency: 47-63 Hz
Current: 300ma @115V, 150ma @230V
Fuse 115V operation: ½ A, 250V, 3AG, Slo-blo
230V operation: ¼ A, 250V, 3AG, Slo-blo
Encoder input: Position signals: channels A & B
TTL square wave signal in quadrature
(90° nominal phase relationship)
Maximum input rate: 50 kHz
Reference signal: TTL square wave
Edge finder input: Compatible with ACU-RITE electronic edge finder
Size: 12.5"W x 5.125"D x 6.5H"
Weight: 7.5 lbs.
Mounting: Bottom: two ¼ -20 threaded inserts
FCC compliance: Class A |
Troubleshooting

This section is intended to provide you with some basic troubleshooting assistance with your readout system. If you cannot correct the problem after following these instructions, contact your authorized ACU-RITE distributor or OEM/OEI for repair or replacement procedures.

No Operation

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
</table>
If you turn power off, you must wait at least 5 seconds before turning it back on, or the readout may not power up. This is because the power supply, in order to withstand brief power outages and brownouts, requires several seconds to reset itself.

If the readout display will not operate, check the following conditions:

- **Check AC power source.** If the readout cannot be powered up, confirm that line voltage is present at the source and that the line voltage meets the required specifications.

- **Check power cord.** Remove the power cord at the electrical input module on the back of the readout. Determine if line voltage is present at this end of the cord.

- **Check fuse.** With the power cord removed, use a thin straight-blade screwdriver to remove the cover of the electrical input module. Refer to page 24. Slide out the fuse holder and check the fuse. If necessary, replace it. Replace the input module cover by snapping it back into place, and reconnect the power cord.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
</table>
Replace fuses only with the specified type. Using incorrect fuses can present a safety hazard. The readout may also be permanently damaged. Refer to the Readout Specification chart on page 25 for the correct fuse.
Incorrect Operation

If system positioning does not seem to be repeatable, the problem could be with the machine tool or with the readout system.

- **Check the machine tool.** Check that the table is not locked. Ensure that the knee, ram, head bolts, turret-to-column bolts, and head-to-knuckle bolts are properly secured. Check the gib adjustments. Tram the head. Check spindle run-out.

- **Check linear encoders.** Check each encoder and reading head for proper installation. Ensure that the mounting brackets are secure.

If the system seems to be displaying incorrect positions, check the following items.

- **Verify presets.** Make sure the numbers you enter are correct.

- **Verify tool.** Check that the correct tool number is being used. Make sure the tool diameter has been entered correctly. Measure the tool diameter to check for tool wear.

- **Verify the scale factor.** Ensure that the correct scale factor is being used.

- **Verify linear error compensation.** Make sure that the factors used for linear error compensation are correct.

Power-On Self Test

There are four tests performed when power is applied to the readout. You will not notice these tests unless a problem is found, in which case a message will scroll across the display.

Keypad—a key was detected stuck down. The message will display what row (x) and column (y) the stuck key is in:

```
KEY STUCK – RxCy – PRESS CLEAR
```

Parameter memory—some of the system setup parameters are not valid. You may be able to check and reset these settings, but it’s possible they will be lost again. The readout should be serviced as soon as possible.

```
MEMORY FAILURE [1] – PRESS CLEAR
```

⚠️ **CAUTION**

Some working settings are not valid. Proceed with caution.
Troubleshooting — the memory used by the readout for calculations is faulty. While it may be possible to use the readout, its position display and other information will not be reliable.

MEMORY FAILURE [2] – PRESS CLEAR

⚠️ **CAUTION**

The readout cannot be relied on for correct operation if any memory failure is indicated. The readout should be serviced immediately.

Program memory — the memory used to store the software is faulty. While it may be possible to operate the readout, some functions will not work properly and wrong information can be displayed.

MEMORY FAILURE [3] – PRESS CLEAR

⚠️ **CAUTION**

The readout cannot be relied on for correct operation if any memory failure is indicated. The readout should be serviced immediately.

Internal Testing

Several internal tests may be performed to ensure that the readout is functioning properly. Tests are available for the internal memory, the keypad, and the display. In addition, the testing procedure reports the software version of the readout.

Begin the internal testing by holding down the key for about 2 seconds. The software version will appear in the X-axis display.
Keypad test. Begin by pressing the \(\textbf{X} \) key, then press each key (except the \(\textbf{X} \) key) in turn to verify that it is functioning properly. When a key is pressed, the X-axis activates a “plus sign” indicator and increments a count. When you release the key, the plus sign disappears.

Display test. Begin by pressing the \(\textbf{X} \) key. All indicators in all displays will light. Visually check each portion of each display to ensure that they are functioning properly.

Press \(\textbf{X} \) again to test the display electronics. All decimal points on all displays will light momentarily, then each segment of all displays will light in turn. Press \(\textbf{X} \) again, and each digit of all displays will light, one digit at a time, starting with the leftmost digit and moving to the right.

Exit the diagnostics by pressing the \(\textbf{X} \) key.

Other Errors

The readout includes built-in test and error-checking circuitry. This circuitry identifies errors that occur, and reports the problem to the operator. Errors are reported by scrolling messages in the X-axis display.

Loss of power is indicated by the “Power was off” message. Loss of power means that power to the readout has been interrupted. Since power to the encoders has also been interrupted, positioning information may no longer be accurate. Press the \(\text{CLEAR} \) key to clear the error message. All display measurements will be zeroed. Refer to page 4 for information about position recovery.

Counting errors are indicated by the “Scale miscount” message, telling you in which axis the miscount occurred. Counting errors result from distorted electrical signals from an encoder. These signals can be a result of an encoder malfunction, misalignment, mounting problems, or electrical interference. Press the \(\text{CLEAR} \) key to clear the error message. The axis display (for both absolute and incremental measurements) will be zeroed. Follow these steps to determine if your difficulties are associated with the readout or with the encoder.

- Ensure that the linear encoder connectors are correctly seated.
- Swap linear encoder cables at the readout to see if the problem still appears in the same display.
- If the problem remains in the same display, the readout is in error.
• If the problem follows the connection change, the linear encoder may be in error. Refer to the Checking the Linear Encoders section of your encoder reference manual.

Display overflow errors are indicated by dashes in all digits in an axis display. A numeric overflow occurs when the intended measurement is too large for the eight-digit display. Clear the error by returning the machine table into an area where measurements can again be displayed, selecting a lower display resolution, setting a new preset, or zeroing the display.

This error may also occur when using the automatic compensation routine while setting the LEC parameter. An error indicates that the calculated compensation factor was outside the acceptable range of -9999 to +9999, and usually is the result of incorrectly entering data. Clear the error and return to the beginning of the linear error compensation routine. Refer to page 20.

Data Logging

The readout collects information about itself while it is being used. This information is stored in memory for review at a later time.

Press and hold the key until the software version is displayed. Then press the and keys simultaneously. Use the key to cycle through the following information.

Power on time—displayed in decimal hours.

Scale travel distance—the travel distance in feet for each axis is scrolled one after the other.

Last 3 errors—the most recent three errors are remembered and messages for the errors are scrolled one after the other.
ACU-RITE Readout Systems are manufactured in the USA

ACU-RITE IS AN
ISO 9001
CERTIFIED
MANUFACTURER

ACU-RITE INCORPORATED
ONE PRECISION WAY
MAISON INDUSTRIAL PARK
JAMESTOWN, NEW YORK 14701