

คู่มืออ้างอิง

ผังแสดงปุ่มของ VUE

ปุ่ม VUE

มีหน้าของการเลือกฟังก์ชันของปุ่มอยู่ 2 หน้าให้เลือกใช้ จากโหมดการใช้งาน ใช้ปุ่ม ลูกศรซษาย/ขวา เพื่อเลื่อนเคอร์เซอร์ไปยังแต่ละหน้า แต่ละหน้า ตัวบ่งชี้หน้าในแถบสถานะจะแสดง แนวการวางหน้า หน้าที่มีสีมืดทึบแสดงถึงหน้าที่คุณกำลังอยู่ในขณะนั้น

พงกชนของบุม	เครองหมายบุม
เปิดเมนู จัดเตรียมงาน และทำให้คุณสามารถเข้าใช้ปุ่ม จัดเตรียมการติดตั้ง (หน้า 4) ได้	(จัดเตรียม
กดเมื่อพร้อมที่จะกำหนดเครื่องหมายอ้างอิง (หน้า 4)	ใช้ อ้างอิง
เปิดตารางเครื่องมือ ดูหน้า 7 สำหรับงานกัด และ หน้า 20 สำหรับงานกลึง <i>ปุ่ม ภครีศองมีอ คือปุ่มเฉพาะสำหรับจออ่านค่าที่แสดงหนึ่งแกน</i>	เครื่องมือ
เปิดฟอร์ม จุดอ้าง เพื่อกำหนดจุดอ้างของแต่ละแกน ดูหน้า 8 สำหรับงานกัด และ หน้า 22 สำหรับงานกลึง <i>ปุ่ม จุดอษาง คือปุ่มเฉพาะสำหรับจออ่านค่าที่แสดงหนึ่งแกน</i>	จุดอ้าง)

. . .

ฟังก์ชันของปุ่ม	เครื่องหมายปุ่ม
เปิดคำแนะนำ วิธีรชษ บนหน้าจอ	(วิธีใช้
สลับไปมาระหว่างหน่วยนิ้วและมิลลิเมตร (หน้า 4 ภายใต้หัวข้อ หน่วย)	$\frac{\overline{\hat{u}}_{2}}{\mu\mu}$
ปุ่มนี้สลับไปมาระหว่างการแสดงรัศมีและเส้นผ่าศูนย์กลาง ฟังก์ชันนี้เฉพาะสำหรับการใช้งานกลึง (หน้า 24)	เรเดียน เส้นผ่าศูนย์กลาง
สลับไปมาระหว่างฟังก์ชัน กำหนด/คศาศูนยฬ ต่างๆ ใช้กับปุ่มแกนเฉพาะแต่ละแกน (หน้า 6)	<u>ก้ำหนด</u> ค่าศูนย์

รหัสการเข้าใช้พารามิเตอร์เครื่องอ่านค่า

คุณจะต้องป้อนรหัสการเข้าใช้เสียก่อน จึงจะสามารถตั้งค่าหรือเปลี่ยนแปลงพารามิเตอร์การติดตั้งที่เกี่ยวข้องกับเครื่องได้ วิธีนี้จะช่วยป้องกันการเปลี่ยนแปลงพารามิเตอร์จัดเตรียมการติดตั้งโดยไม่ตั้งใจได้

เครื่องอ่านค่าก็พร้อมแล้วที่จะให้คุณดำเนินการตั้งค่าพารามิเตอร์ของเครื่อง

ข้อความสำคั-

ผู้ดูแลเครื่องอาจนำหน้านี้ออกจากคู่มืออ้างอิงหลังจากการตั้งค่าขั้นต้นให้กับเครื่องอ่านค่าแล้ว โดยนำไปเก็บในที่ปลอดภัยสำหรับการใช้ในอนาคต

iv

บทนำ

เวอร์ชันซอฟต์แวร์

เวอร์ชันซอฟต์แวร์จะปรากฏบนหน้าจอขณะเริ่มเปิดเครื่อง

คู่มีอการใช้จะครอบคลุมพังก์ชันของ VUE สำหรับทั้งการใช้งานแบบ **งานกัด**และ**งานกลึง** ข้อมูลการใช้งานแบ่งออกเป็น 3 ส่วน ได้แก่: การใช้งานทั่วไป, การใช้งานเอพาะงานกัด และการใช้งานเอพาะงานกลึง

VUE

จำนวนแกนในการแสดงค่า DRO

VUE DRO มีทั้งชนิดแสดงค่าในรูปแบบ**หนึ่ง, สอง** และ **สามแกน** คู่มีอเล่มนี้จะใช้การแสดงค่าของ VUE DRO รุ่น 3 แกน ในการแสดงภาพและคำอธิบายของฟังก์ชันคีย์ต่างๆ ตลอดทั้งเล่ม

สั-ลักษณ์ที่แสดงไว้ในหมายเหตุต่างๆ

ทุกๆ หมายเหตุจะมีเครื่องหมายกำกับอยู่ทางด้านซ้าย เพื่อให้ผู้ปฏิบัติงานทราบชนิด และ/หรือ ระดับความสำคั-ของหมายเหตุนั้นๆ

ข้อมูลทั่วไป

เช่น คุณสมบัติของ VUE

คำเตือน

เช่น เมื่อต้องใช้เครื่องมือพิเศษสำหรับการทำงานอย่างหนึ่ง

ข้อควรระวัง - ความเสี่ยงจากไฟฟ้าดูด

เช่น ขณะเปิดตัวเครื่อง

แบบอักษร VUE

ตารางด้านล่างแสดงลักษณะที่แตกต่างกันของปุ่ม (ปุ่ม, ปุ่มบนตัวเครื่อง) ซึ่งปรากฏในเนื้อหาของคู่มือเล่มนี้:

🔳 ปุ่ม - ปุ่ม จัดภตรียม

ปุ่มบนตัวเครื่อง - ปุ่มบนตัวเครื่อง ENTER

การรับประกันการใช้งานโดยปราศจากปั-หา

www.acu-rite.com

Table of Contents

I – 1 การแนะนำเครื่อง VUE
โครงร่างของหน้าจอ1
ปุ่มบนตัวเครื่อง VUE2
โหมดการใช้งาน
การประเมินผลเครื่องหมายอ้างอิง
พารามิเตอร์จัดเตรียมงาน
พงชร แกนเส้นผ่าศูนย์กลาง
นาพการบรรถาทางาน
น้ำเข้า/ส่งออก6
รายละเอียดปุ่มกำหนด/ค่าศูนย์6

l – 2 การใช้งานเฉพาะงานกัด

ราย	เอียดฟังก์ชันของปุ่ม	7
	ม เครื่องมือ บนตัวเครื่อง	7
	ารางเครื่องมือ	7
	ารชดเซยเครื่องมือ	7
	ยกเครื่องมือจากตารางเครื่องมือ	8
	ารตั้งค่าจุดอ้าง	8
	าหนดจุดอ้างด้วยเครื่องมือ	9
	าต้น	.10
	าต้นระยะสัมบูรณ์	.10
	าต้นระยะส่วนเพิ่ม	.12
	ม 1/2 บนตัวเครื่อง	.13
	ม รูปแบบวงกลม และ รูปแบบเส้นตรง บนตัวเครื่อง	.13
	ไงก์ชันสำหรับรูปแบบงานกัด	.13
	ปแบบเส้นดรง	.15
งาเ	เดียงและงานกัดโค้ง	.15
		.16
	านกัดโค้ง	.18

l – 3 การใช้งานเฉพาะงานกลึง

ตารางเครื่องมือ	
ไอคอนที่แสดงของเครื่องมือ	
การตั้งค่าจุดอ้าง	

ปุ่มเครื่องคำนวณความเรียวบนตัวเครื่อง	
	24
ปุ่ม Radius/Diameter	24
การกำหนดทิศทาง	24

II – 1 จัดเตรียมการติดตั้ง

พารามิเตอร์จัดเตรียมการติดตั้ง	
จัดเตรียมตัวเข้ารหัส	
ตั้งค่าการแสดงผล	
การควบรวม	
การควบรวม Z (เฉพาะการใช้งานกลึง)	
การใช้การควบรวม Z	
การยกเลิกการควบรวม Z	
การชดเซยข้อผิดพลาด	
การชดเซยข้อผิดพลาดแบบเส้นตรง	
การชดเซยข้อผิดพลาดแบบไม่ใช่เส้นตรง	
การขดเขยระยะ Backlash	
การตั้งค่าการนับ	
วิเคราะห์	
ทดสอบแผงปุ่ม	
ทดสอบการแสดงผล	

ll - 2 การติดตั้งและการเชื่อมต่อไฟฟ้า

าารติดตั้ง	31
ข้อกำหนดทางไฟฟ้า	31
ชภาวะแวดล้อม	31
าารดูแลรักษาเชิงป้องกัน	31

II **-** 3 ขนาด

หมายเลข ID อุปกรณ์เสริม	32
ชดติดตั้ง DRO พร้อมแกน (ข้อมูลอ้างอิง)	33
การติดตั้ง DRO กับเรานยึด	33

I – 1 การแนะนำเครื่อง VUE

โครงร่างของหน้าจอ

เครื่องหมายแถบสถานะ

การแสดงค่าที่อ่านได้ของ VUE ของ ACU-RITE ทำให้คุณสามารถใช้คุณสมบัติที่กำหนดเฉพาะตามการใช้งานต่างๆ ได้ ช่วยให้คุณสามารถใช้เครื่องมือแบบแมนวลของคุณอย่างได้ประโยชน์สูงสุด

- แถบสถานะ จะแสดงค่าปัจจุบันของจุดอ้าง, เครื่องมือ, อัตราป้อน, เวลานาฬิกาจับเวลาทำงาน, หน่วยการวัด, สถานะโหมดการใช้งาน, ตัวบ่งซี้หน้า และกำหนด/ค่าศูนย์ โปรดดูรายละเอียดของการตั้งค่าพารามิเตอร์แถบสถานะได้ในหัวข้อ การจัดเตรียมงาน
- พื้นที่แสดง แสดงตำแหน่ง ณ ขณะนี้ของแต่ละแกน อีกทั้งยังแสดงฟอร์ม, ช่อง, บ็อกซ์คำแนะนำ, ข้อความข้อผิดพลาด และหัวข้อวิธีใช้
- 🔳 ชื่อแกน แสดงแกนสำหรับปุ่มแกนที่สอดคล้องกัน
- 🔳 เครื่องหมายอ้างอิง แสดงสถานะ ณ ขณะนี้ของเครื่องหมายอ้างอิง
- 🔳 ชื่อของปุ่ม แสดงฟังก์ชันที่หลากหลายของงานกัดหรืองานกลึง

ปุ่มบนตัวเครื่อง VUE

ปุ่มบนตัวเครื่องของจออ่านค่า VUE จะแตกต่างกันไปตามจำนวนแกนที่จออ่านค่าแสดง จออ่านค่าที่แสดงหนึ่งแกนจะมีปุมบนตัวเครื่องเฉพาะ 3 ปุ่มแรกตามที่แสดงที่ด้านล่าง จออ่านค่าที่แสดงสองหรือสามแกนจะมีปุมบนตัวเครื่องทั้งหมดตามที่แสดงที่ด้านล่าง

ปุ่มบนตัวเครื่อง 2 ปุ่มสุดท้ายมีเฉพาะในจออ่านค่า VUE ที่ใช้ในงานกัดหรืองานกลึง โดยเครื่องหมายแรกใช้กับจออ่านค่างานกัด และเครื่องหมายที่สองใช้กับจออ่านค่างานกลึง

พังก์ชันของปุ่มบนตัวเครื่อง	เครื่องหมายปุ่ม บนตัวเครื่อง
สลับการแสดงผลระหว่างโหมดการใช้งาน คือ ระยะที่ต้องเคลื่อนที่ (ส่วนเพิ่ม) กับ ค่าจริง (สัมบูรณ์) (ดูหน้า 3)	
ใช้เพื่อแบ่งดำแหน่งปัจจุบันเป็นสองส่วนเท่าๆ กัน (ดูหน้า 13)	1/2
ปุ่ม ค้านวณ บนตัวเครื่องจะเปิดฟังก์ชันเครื่องคำนวณลำหรับการคำนวณทางคณิตศาสตร์ทั่วไป, ตรีโกณ, RPM และ ความเรียว (เฉพาะงานกลึง) (ดูหน้า 23)	CALC
ปุ่ม จุดอษาง บนตัวเครื่องเปิดฟอร์ม จุดอ้าง เพื่อกำหนดจุดอ้างของแต่ละแกน (สำหรับงานกัด ดูหน้า 8 สำหรับงานกลึง ดู หน้า 22)	
ปุ่ม ภครึศองมือ บนตัวเครื่องเปิดตารางเครื่องมือ (สำหรับงานกัด ดู หน้า 7 สำหรับงานกลึง ดู หน้า 20)	
ปุ่ม รูปมบบวงกลม บนตัวเครื่อง (เฉพาะงานกัด) เปิดฟอร์ม รูปแบบวงกลม สำหรับคำนวณตำแหน่งของรู (หน้า 13)	
ปุ่ม รูปมบบภสษนตรง บนตัวเครื่อง (เฉพาะงานกัด) เปิดฟอร์ม รูปแบบเส้นตรง สำหรับคำนวณตำแหน่งของรู (หน้า 13)	
 ปุ่ม งานกัดภอียง บนตัวเครื่อง (งานกัด) หรือปุ่ม การกำหนดทิศทาง บนตัวเครื่อง (งานกลึง) เปิดฟอร์ม งานกัดเอียง (หน้า 16) หรือฟอร์ม การกำหนดทิศทาง (หน้า 24) 	

โหมดการใช้งาน

VUE มีโหมดการใช้งาน 2 โหมด คือ ระยะที่ต้องเคลื่อนที่ (สควนภพิศม) และ ค่าจริง (สัมบูรณฬ) การใช้โหมดระยะที่ต้องเคลื่อนที่ทำให้คุณเข้าสู่ระยะที่ต้องเคลื่อนที่ได้โดยง่าย โดยการเคลื่อนที่ข้ามไปเพื่อแสดงค่าศูนย์ เมื่อทำงานในโหมด ส่วนเพิ่ม คุณสามารถป้อนค่าพิกัดที่กำหนดในรูปแบบการวัดขนาดแบบส่วนเพิ่มหรือแบบสัมบูรณ์ โหมดการใช้งานค่าจริงจะแสดงตำแหน่งจริงของเครื่องมือ ณ ขณะนี้ ซึ่งสัมพันธ์กับจุดอ้างที่ใช้อยู่ ในโหมดนี้ การเคลื่อนที่ทั้งหมดทำได้โดยการเลื่อนเครื่องมือจนกระทั่งค่าที่แสดงบนจอภาพตรงกันกับตำแหน่งที่กำหนดตามที่ด้ องการ

ในขณะที่อยู่ในโหมด (ค่าจริง) สัมบูรณฬ ถ้า VUE ถูกตั้งค่าสำหรับการใช้งานงานกัด เฉพาะการชดเชยความยาวเครื่องมือเท่านั้นที่ทำงาน ในโหมด สศวนภพิศม (ระยะที่ต้องเคลื่อนที่) จะสามารถใช้ได้ทั้งค่าการชดเชยรัศมีและความยาว เพื่อคำนวณระยะของ "ระยะที่ต้องเคลื่อนที่" ที่ต้องใช้เพื่อให้ถึงตำแหน่งที่กำหนดตามที่ต้องการ โดยสัมพันธ์กับขอบของเครื่องมือซึ่งใช้ในการตัด

หากกำหนดค่า VUE ให้ใช้กับเครื่องกลึง คุณสามารถใช้ค่าการชดเชยเครื่องมือทั้งหมดได้ทั้งในโหม สัมบูรณฬ และโหมด สศวนภพิศม

กดปุ้ม สศวนภพิศม/สัมบูรณพ์ (ดู Fig. Ⅰ.1) บนตัวเครื่อง เพื่อสลับไปมาระหว่างสองโหมดนี้ ในการดูฟังก์ชันของปุ่มในโหมดสศวนภพิศมหรือยหมดสัมบูรณพ์ ให้ใช้ปุ๋ม ลูกศรชษาย/ขวา

สำหรับงานกลึงมีวิธีการใช้งานอย่างเร็วสำหรับการควบรวมตำแหน่งแกน Z ในระบบ 3 แกน

การประเมินผลเครื่องหมายอ้างอิง

คุณสมบัติการประเมินผลเครื่องหมายอ้างอิงของ VUE จะสร้างความสัมพันธ์โดยอัตในมัติอีกครั้งระหว่างตำแหน่งแกนเสื่อน และค่าที่แสดงที่คุณกำหนดไว้ครั้งสุดท้ายโดยการตั้งค่าจุดอ้าง

สำหรับแกนที่มีด้วเข้ารหัสซึ่งมีเครื่องหมายอ้างอิง ด้วบ่งชี้อ้างอิงนั้นจะกะพริบสำหรับแกนนั้น (ดู Fig. 1.2) หลังจากข้ามเครื่องหมายอ้างอิงไป ด้วบ่งชี้จะหยุดกะพริบ และด้วบ่งชี้ "อ้างอิง" นั้นจะเปลี่ยนเป็นไม่กะพริบ

การทำงานโดยไม่มีการประเมินผลเครื่องหมายอ้างอิง

คุณสามารถใช้งาน VUE ที่ปราศจากการข้ามผ่านเครื่องหมายอ้างอิงได้ด้วย กดปุ่ม **ฤมศมีอษางอิง** เพื่อออกจากบ็อกซ์คำสั่งประเมินผลเครื่องหมายอ้างอิงและทำงานต่อ

คุณสามารถข้ามผ่านเครื่องหมายอ้างอิงได้ในภายหลัง หากมีความจำเป็นที่จะต้องกำหนดจุดอ้าง ซึ่งสามารถสร้างขึ้นได้อีกครั้ง หลังจากระบบจ่ายไฟถูกตัดขาด กดปุ่ม **รชษอษางอิง** เพื่อให้การดำเนินการเรียกคืนตำแหน่งทำงาน

> ถ้าตั้งค่าตัวเข้ารหัสโดยปราศจากเครื่องหมายอ้างอิงแล้ว ตัวบ่งซื้อ้างอิง จะไม่ปรากฏ และจุดอ้างที่กำหนดจากแกนใดๆ จะหายไปทันทีที่ระบบจ่ายไฟถูกปิด

ฟังก์ชัน ใช้/เลิกใช้ อ้างอิง:

al

ปุ่มรชษอษางอิง/ภลิกรชษอษางอิง ที่ปรากฏในระหว่างการดำเนินการเรียกคืนตำแหน่ง จะทำให้ผู้ปฏิบัติงานสามารถเลือกเครื่องหมายอ้างอิงเฉพาะบนตัวเข้ารหัสได้ เรื่องดังกล่าวมีความสำคั-เมื่อใช้ตัวเข้ารหัสที่มีเครื่องหมายอ้างอิงแบบตายตัว (แทนชนิดที่มีคุณสมบัติ Position-Trac?) เมื่อกดปุ่ม ภลิกรชษอษางอิงการดำเนินการเรียกคืนจะหยุดชั่วคราว และเครื่องหมายอ้างอิงใดๆ ที่ถูกข้ามผ่านในขณะที่ตัวเข้ารหัสเคลื่อนที่ก็จะถูกยกเลิก เมื่อกดปุ่ม รชษอษางอิง การดำเนินการประเมินผลจะกลับมาทำงานอีกครั้งและระบบจะเลือกเครื่องหมายอ้างอิงที่ถูกข้ามถัดไป

คุณไม่จำเป็นต้องข้ามผ่านเครื่องหมายอ้างอิงของตัวเข้ารหัสทุกตัว แต่ให้ข้ามผ่านเฉพาะแกนที่คุณต้องการเท่านั้น ทันทีที่เครื่องหมายอ้างอิงสำหรับทุกแกนที่ต้องการได้ถูกสร้างขึ้น กดปุ่ม **ฤมศมีอษางอิง** เพื่อยกเลิกการออกจากรอบคำสั่ง ถ้าระบบพบเครื่องหมายอ้างอิงทั้งหมด ระบบจะย้อนกลับไปยังหน้าจอแสดงผล DRO โดยอัตโนมัติ

Fig. I.1

ปุ่มบนตัวเครื่อง ระยะที่ต้องเคลื่อนที่ (สศวนภพิศม) / ค่าจริง (สัมบูรณฬ)

Fig. 1.2

หน้าจอสำหรับการสร้างเครื่องหมายอ้างอิง

พารามิเตอร์จัดเตรียมงาน

ในการดูและเปลี่ยนพารามิเตอร์จัดเตรียมงาน ขั้นแรกให้กดปุ่ม **จัดเตรียม** จากนั้นใช้ปุ่ม ลูกศรขึ้น/ลง เพื่อเลื่อนแถบสีไปยังพารามิเตอร์ที่คุณต้องการ และกดปุ่ม ENTER ดูรูป Fig. 1.3

หน่วย

ฟอร์ม หน่วย ใช้สำหรับระบุการแสดงหน่วยและรูปแบบที่ต้องการ คุณสามารถเลือกหน่วยวัดโดยการกดปุ่ม **นิษว/มม**. ทั้งในโหมด ค่าจริง หรือ ระยะที่ต้องเคลื่อนที่

สเกลแฟกเตอร์

สเกลแฟกเตอร์ใช้สำหรับการปรับสัดส่วนให้ให-ขึ้นหรือเล็กลง ค่าสเกลแฟกเตอร์ 1.0 จะสร้างขึ้นงานที่มีขนาดเท่ากับการวัดขนาดบนแบบพิมพ์ สเกลแฟกเตอร์ >1 จะ "ขยาย" ขึ้นงาน และ <1 จะ "ย่อ" ขึ้นงาน

- ใช้ปุ่มตัวเลขเพื่อป้อนค่าจำนวนที่มากกว่าศูนย์ ช่วงตัวเลขคือ 0.1000 ถึง 10.000 คุณยังสามารถป้อนค่าติดลบได้อีกด้วย
- 🕨 การตั้งค่าสเกลแฟกเตอร์จะยังคงอยู่ในรอบของระบบจ่ายไฟ
- 🕨 เมื่อสเกลแฟกเตอร์เป็นค่าอื่นๆ ที่ไม่ใช่ 1 เครื่องหมายการสเกล 📈 จะปรากฏในการแสดงแกน
- ปุ่ม ทำงาน/ฤมศทำงาน จะใช้เพื่อยกเลิกสเกลแฟกเตอร์ ณ ขณะนี้

มิเรอร์

สเกลแฟกเตอร์ -1.00 จะสร้างมิเรอร์อิมเมจของชิ้นงาน คุณสามารถทำมิเรอร์และปรับขนาดชิ้นงานได้พร้อมกัน

D:O|T:1|F: 0.0| 0:00| ນີ້ວ| ABS | |

จัดเตรียมงาน หน่วยวัด สเกลแฟกเตอร์ เส้นผ่าศูนย์กลางแกน การเตือนเมื่อใกล้ค่าศูน: การตั้งค่าแถบสถานะ นาฬิกาของงาน การปรับค่าคอนโซล ภาษา	กำหนดหน่วยวัดในขณะ ทำงานสำหรับการวัด ขนาดแบบเส้นตรง และแบบมุม
จัดเตรียม การติดตั้ง ส่งออก	วิธีใช้)

Fig. I.3 หน้าจอจัดเตรียมงานในงานกัด

แกนเส้นผ่าศูนย์กลาง

เลือก แกนเส้นผ่าศูนย์กลาง เพื่อกำหนดว่าจะให้แกนใดแสดงค่ารัศมีหรือเส้นผ่าศูนย์กลาง ทำงาน แสดงว่าตำแหน่งแกนจะแสดงเป็นค่าเส้นผ่าศูนย์กลาง เมื่อใช้ตัวเลือก ไม่ทำงาน ระบบจะไม่ใช้คุณสมบัติรัศมี/ เส้นผ่าศูนย์กลาง ดู Fig. 1.4 คุณสมบัติรัศมี/เส้นผ่าศูนย์กลางสำหรับการใช้งานงานกลึง

- เลื่อนเคอร์เซอร์ไปที่ แกนเส้นผ่าศูนย์กลาง และกด ENTER
- เคอร์เซอร์จะอยู่ในช่อง แกน X กดปุ่มทำงาน/ถุมศทำงาน เพื่อเปิดหรือปิดคุณสมบัติ โดยขึ้นอยู่กับพารามิเตอร์ที่คุณต้องการสำหรับแกนนั้น
- กด ENTER

การเตือนใกล้ค่าศูนย์

ฟอร์มการเตือนใกล้ค่าศูนย์ ใช้เพื่อตั้งค่ากราฟแท่งซึ่งแสดงใต้การแสดงโหมดค่าระยะที่ต้องเคลื่อนที่ของแกน แต่ละแกนจะมีช่วงของแกนเฉพาะของตน

กดปุ่ม ทำงาน/ฤมศทำงาน เพื่อใช้งานหรือเริ่มต้นการป้อนค่าโดยใช้ปุ่มตัวเลขได้โดยง่าย บ็อกซ์ตำแหน่งปัจจุบันจะเริ่มต้นเคลื่อนที่เมื่อตำแหน่งอยู่ในช่วงที่กำหนด

การตั้งค่าแถบสถานะ

แถบสถานะ คือ แถบที่แยกเป็นส่วนๆ ทางด้านบนของหน้าจอซึ่งจะแสดงค่าจุดอ้าง, เครื่องมือ, อัตราป้อน, นาฬิกาจับเวลาทำงาน และ ตัวปงชี้หน้าในขณะนั้น

กดปุ่ม ทำงาน/ฤมศทำงาน สำหรับแต่ละการตั้งค่าที่คุณต้องการให้ปรากฏ

นาฬิกาจับเวลาทำงาน

นาฬิกาจับเวลาทำงานจะแสดง ชั่วโมง (h), นาที (m), วินาที (s) การทำงานจะเหมือนนาฬิกาจับเวลาทั่วไปที่แสดงเวลาที่ผ่านไป (นาฬิกาเริ่มจับเวลาจาก 0:00:00)

ช่องเวลาที่ผ่านไปจะแสดงเวลาสะสมรวมของแต่ละช่วง

▶ กดปุ่มภริศม/หยุด ช่องสถานะจะแสดงข้อความ กำลังทำงานอยู่ กดปุ่มอีกครั้งเพื่อหยุดเวลาที่กำลังผ่านไป

🕨 กด **ตัษงคศารหมศ** เพื่อตั้งค่าเวลาที่ผ่านไปใหม่ การตั้งค่าใหม่จะหยุดนาฬิกาถ้านาฬิกากำลังทำงานอยู่

การกดปุ่มจุดทศนิยมขณะที่อยู่ในโหมดทำงาน จะหยุดและเริ่มนาฬิกาใหม่ การกดปุ่มศูนย์จะรีเข็ตนาฬิกา

การปรับค่าคอนโซล

ความเข้มของหน้าจอสามารถปรับได้โดยใช้ปุ่มในฟอร์มนี้ หรือโดยใช้ปุ่มลูกศรขึ้น/ลง บนปุ่มกดในโหมดการทำงานทั้งสอง การปรับความเข้มจะมีความจำเป็นขึ้นอยู่กับสภาพแลงโดยรอบที่เปลี่ยนแปลงและความต้องการของผู้ปฏิบัติงาน ฟอร์มนี้ยังใช้ในการกำหนดค่าไทม์เอาต์ของการไม่ใช้งานหน้าจอสำหรับโปรแกรมพักหน้าจอ การตั้งค่าการพักหน้าจอคือระยะเวลาที่ระบบอยู่ในสถานะไม่มีการใช้งาน ก่อนที่จอ LCD จะสลับไปที่โหมดพักหน้าจอ เวลาเมื่อไม่มีการใช้งานอาจจะกำหนดเป็น 30 ถึง 120 นาที การพักหน้าจอสามารถยกเลิกในรอบระบบจ่ายไฟขณะนั้นได้

 D:0 | T:1 | F: 0.0 | 0:00 | นิ้ว | ABS | |

 เส้นผ่าศูนย์กลางแกน

 เส้นผ่าศูนย์กลางแกน

 เส้นผ่าศูนย์กลางแกน

 X
 ไม่ทำงาน

 Y
 ไม่ทำงาน

 Z
 ไม่ทำงาน

 ทำงาน
 วิธีใช้

Fig. I.4 ฟอร์มของแกนเส้นผ่าศูนย์กลาง

ภาษา

- VUE รองรับหลายภาษา ในการเปลี่ยนภาษาที่เลือก ให้ทำดังนี้
- กดปุ่ม ภาษา จนกระทั่งภาษาที่ต้องการเลือกปรากฏบนปุ่มและฟอร์ม
- กด ENTER เพื่อยืนยันการเลือกของคุณ

นำเข้า/ส่งออก

พารามิเตอร์จัดเตรียมงานและการติดตั้งสามารถนำเข้าหรือส่งออกผ่านพอร์ต USB แบบ "ปกติชนิด B"

- 🕨 กดปุ่ม **นำภขษา/สศงออก** ในหน้าจอจัดเตรียม
- 🕨 กด **นำภขษา** เพื่อดาวน์โหลดข้อมูลพารามิเตอร์การใช้งานจากคอมพิวเตอร์
- 🕨 กด **สศงออก** เพื่ออัปโหลดข้อมูลพารามิเตอร์การใช้งาน ณ ขณะนี้ ไปยังคอมพิวเตอร์
- 🕨 ในการออกจากโปรแกรม กดปุ่ม C

รายละเอียดปุ่มกำหนด/ค่าศูนย์

ปุ่ม **กำหนด/คศาศูนยพ** คือปุ่มซึ่งกำหนดผลของการกดปุ่มแกน ปุ่มนี้คือปุ่มที่สลับการใช้งานไปมาระหว่าง กำหนด และ ค่าศูนย์ สถานะปัจจุบันจะแสดงให้เห็นในแถบสถานะ

เมื่อสถานะคือ กำหนด ดู Fig. 1.5 และ VUE อยู่ในโหมดค่าจริง การเลือกปุ่มแกนจะเปิดฟอร์มจุดอ้าง สำหรับแกนที่ถูกเลือก ถ้า VUE อยู่ในโหมดระยะที่ต้องเคลื่อนที่ ฟอร์มค่าต้น จะเปิด

เมื่อสถานะเป็นค่าศูนย์ และ VUE อยู่ในโหมดค่าจริง การเลือกปุ่มแกนจะกำหนดจุดอ้างขณะนี้ สำหรับแกนนั้นให้เป็นศูนย์ ณ ตำแหน่งขณะนี้ ถ้าอยู่ในโหมดระยะที่ต้องเคลื่อนที่ ค่าระยะที่ต้องเคลื่อนที่ ณ ขณะนี้จะถูกกำหนดให้เป็นศูนย์

ถ้า VUE อยู่ในโหมดค่าจริงและสถานะของ กำหนด/ค่าศูนย์ คือ ค่าศูนย์ การกดปุ่มแกนใดๆ จะตั้งค่าจุดอ้าง ณ ขณะนี้ใหม่เป็นค่าศูนย์ ณ ตำแหน่งปัจจุบันสำหรับแกนนั้น

Fig. I.5 ตัวบ่งชี้กำหนด/ค่าศูนย์

I – 2 การใช้งานเฉพาะงานกัด

ในหมวดนี้จะอธิบายการใช้งานและฟังก์ชันของปุ่มเฉพาะกับการใช้งานกัดเท่านั้น

รายละเอียดฟังก์ชันของปุ่ม

ปุ่ม เครื่องมือ บนตัวเครื่อง

ปุมบนตัวเครื่องนี้จะเปิดตารางเครื่องมือและให้มีการเข้าใช้ฟอร์ม เครื่องมือ สำหรับการป้อนค่าพารามิเตอร์ของเครื่องมือ (ใช้ปุมหนึ่งในจออ่านค่าที่แสดงหนึ่งแกน) VUE สามารถเก็บค่าเครื่องมือได้ถึง 16 รายการ ในตารางเครื่องมือ

ตารางเครื่องมือ

ตารางเครื่องมือของ VUE

เป็นวิธีที่สะดวกในการเก็บข้อมูลเส้นผ่าศูนย์กลางและค่าชดเซยความยาวสำหรับแต่ละเครื่องมือที่คุณใช้ตามปกติ คุณสามารถป้อนค่าได้ถึง 16 เครื่องมือ (ดู Fig. 1.6 ตารางเครื่องมือในงานกัด)

ในขณะที่อยู่ในฟอร์มตารางเครื่องมือ หรือในแต่ละฟอร์มข้อมูลเครื่องมือ จะมีปุ่มที่ใช้ได้ดังต่อไปนี้:

ฟังก์ชัน	ปุ่ม
ปุ่มนี้ให้ผู้ปฏิบัติงานสามารถเลือกได้ว่าจะใช้การชดเชยความยาวเครื่องมือทั้ง หมดกับแกนใด ค่าเส้นผ่าศูนย์กลางของเครื่องมือจะถูกใช้ต่อมาเพื่อชดเชยสองแกนที่เหลือ	(แกนเครื่องมือ [Z]
กดเพื่อป้อนค่าการชดเซยความยาวเครื่องมือโดยอัตโนมัติ มีเฉพาะในช่องความยาวเครื่องมือเท่านั้น	(คำนวณ ความยาว
ปุ่มนี้ใช้เปิดฟอร์ม ชนิดเครื่องมือ สำหรับการเลือก มีเฉพาะในช่องชนิด	ชนิด เครื่องมือ

0:0| T:1 |F: 0.0| 0:00| นิ้ว | ABS | 🛲 |

	ตารางเครื่อ	งมือ (DIA/LENGTH)
1	2.000/	20.000 มม. หัวแกะสลัก
2	5.000/	14.000 มม. หัวเจาะนำร่อ
3	25.000/	50.000 มม. ด้ามจับหัวคร้
4	6.000/	12.000 มม. หัวกัดคาร์ไบ
5	10.000/	25.000 มม. หัวคว้านรู
6	2.000/	0.000 มม. หัวกัดปล [้] ายแ
7	2.500/	0.000 มม. หัวกัดปลายแ
8	3.000/	5.000 มม.
(แกนเครื่ะ [2]	องมือ ลบ เครื่องมือ	เช้ เครื่องมือ วิธีใช้

การชดเชยเครื่องมือ

VUE มีการขดเชยเครื่องมือ ซึ่งให้คุณป้อนค่าการวัดขนาดขึ้นงานได้โดยตรงจากแบบเขียน ระยะที่ต้องเคลื่อนที่ที่แสดงจะได้รับการปรับให้ยาวขึ้น (R+) หรือสั้นลง (R–) โดยอัตโนมัติตามค่าของรัศมีเครื่องมือ ดู Fig. I.7 (สำหรับข้อมูลเพิ่มเดิม)

การขดเซยความยาวอาจจะถูกป้อนค่าด้วยค่าที่ทราบอยู่แล้ว หรือ VUE อาจจะกำหนดการขดเซยโดยอัตโนมัติ ความยาวเครื่องมือ คือ ความแตกต่างของความยาว ∆L ระหว่างเครื่องมือและเครื่องมืออ้างอิง ความแตกต่างของความยาวแสดงด้วยเครื่องหมาย "∆" เครื่องมืออ้างอิงแสดงเป็น T1 ดู Fig. 1.8

ตารางเครื่องมือในงานกัด

Fig. I.6

Fig. I.7 การชดเชยเครื่องมือ

l – 2 การใช้งานเฉพาะงานกัด

เครื่องหมายสำหรับความยาวที่แตกต่าง Δ L

ถ้าเครื่องมือ ยาวกว่า เครื่องมืออ้างอิง: ΔL > 0 (+) ถ้าเครื่องมือ สั้นกว่าเครื่องมืออ้างอิง: ΔL < 0 (-)

ตามที่กล่าวไว้ข้างต้น เครื่อง VUE ยังสามารถกำหนดค่าการชดเซยความยาวเครื่องมือได้อีกด้วย วิธีการนี้ใช้การแตะจุดปลายของเครื่องมือแต่ละชิ้นกับพื้นผิวอ้างอิงร่วม สิ่งนี้ทำให้ VUE สามารถกำหนดความแตกต่างระหว่างความยาวของแต่ละเครื่องมือได้

เสื่อนเครื่องมือจนกระทั่งปลายเครื่องมือแตะกับพื้นผิวอ้างอิง กดปุ่ม **คำนวณความยาว** VUE จะคำนวณค่าชดเชยที่สัมพันธ์กับผิวนี้ ทำขั้นตอนนี้ข้ำสำหรับเครื่องมือแต่ละรายการที่เพิ่มซึ่งใช้พื้นผิวอ้างอิงเดียวกัน

เฉพาะชุดเครื่องมือที่ใช้พื้นผิวอ้างอิงเดียวกันที่คุณสามารถเปลี่ยนเครื่องมือได้โดยไม่ต้องตั้งค่าจุ ดอ้างใหม่

เรียกเครื่องมือจากตารางเครื่องมือ

ในการเรียกเครื่องมือหนึ่ง ให้กดปุ่ม ภครึศองมือ บนตัวเครื่อง ใช้ปุ่มลูกศรขึ้น/ลง เสื่อนเคอร์เซอร์ไปยังรายการตัวเลือกเครื่องมือต่างๆ (1-16) เสื่อนแถบสีมาที่เครื่องมือที่คุณต้องการ ตรวจสอบว่าได้เรียกเครื่องมือที่ถูกต้องมาใช้ แล้วกดปุ่ม ภครึศองมือ หรือ C เพื่อออก

การตั้งค่าจุดอ้าง

การตั้งค่าจุดอ้างจะกำหนดความสัมพันธ์ระหว่างตำแหน่งแกนและค่าที่แสดง

การตั้งค่าจุดอ้างสามารถทำได้ดีที่สุดด้วยการใช้ฟังก์ชันตรวจสอบของ VUE กับเครื่องมือหนึ่ง

คุณสามารถกำหนดค่าจุดอ้างด้วยวิธีปกติโดยการแตะขอบของขึ้นงานในตำแหน่งหนึ่งและตำแหน่งถัดไป ด้วยการใช้เครื่องมือ และป้อนค่าของตำแหน่งเครื่องมือด้วยตนเองเสมือนเป็นค่าจุดอ้าง (ดูตัวอย่างด้านล่าง) ดู Fig. 1.9 และ Fig. 1.10

Fig. I.8 ความยาวและเส้นผ่าศูนย์กลางเครื่องมือ

Fig. I.9 แตะที่ขอบชิ้นงาน

Fig. I.10 ฟอร์มกำหนดจุดอ้าง

กำหนดจุดอ้างด้วยเครื่องมือ

การใช้เครื่องมือในการกำหนดจุดอ้างด้วยการใช้ฟังก์ชันการตรวจสอบของ VUE ดู Fig. I.11 และ Fig. I.12

ฟังก์ชันของปุ่มในการตรวจสอบเหล่านี้มีดังต่อไปนี้

- 📕 ขอบของชิ้นงานเสมือนเป็นจุดอ้าง: ปุ่ม**ขอบ**
- 📕 แนวเส้นศูนย์กลางระหว่างขอบชิ้นงานสองชิ้น: ปุ่ม**มนวภสษนศูนยฬกลาง**
- 📕 ศูนย์กลางของรูหรือกระบอกสูบ: ปุ่ม**ศูนยฬกลางวงกลม**

ในทุกฟังก์ชันการตรวจสอบ VUE จะนับรวมค่าเส้นผ่าศูนย์กลางของปลายเครื่องมือที่ป้อนด้วย

ในการยกเลิกฟังก์ชันการตรวจสอบในขณะที่ยังทำงานอยู่ กดปุ่ม C

ตัวอย่าง: ตรวจสอบขอบชิ้นงาน และกำหนดขอบเสมือนเป็นจุดอ้าง

การเตรียมการ: กำหนดเครื่องมือที่จะทำงานเป็นเครื่องมือซึ่งจะถูกใช้กำหนดจุดอ้าง

แกนจุดอ้าง: X =0

เส้นผ่าศูนย์กลางเครื่องมือ D = 0.25 นิ้ว

กดปุ่ม จุดอษาง บนตัวเครื่อง

กดปุ่ม ลูกศรลง จนกระทั่งแถบสว่างอยู่ที่ช่องแกน X

กดปุ่ม**ตรวจสอบ**

กดปุ่ม **ขอบ**

แตะขอบชิ้นงาน

กดปุ้ม **คำนวณ** เพื่อจัดเก็บค่าสัมบูรณ์ปัจจุบันในขณะที่เครื่องมือแตะที่ขอบของขึ้นงาน ตำแหน่งของขอบที่สัมผัสจะนับรวมเอาเส้นผ่าศูนย์กลางของเครื่องมือที่ใช้ (⊺.1, 2...) เข้ามาด้วย และ**ทิศทางสุดท้ายที่เครื่องมือเคลื่อนที่ไป**ก่อนหน้าการกดปุ้ม **คำนวณ**

ถอยเครื่องมือจากชิ้นงานแล้วป้อนค่า 0" จากนั้น กดปุ่ม ENTER

Fig. l.11 การตั้งค่าจุดอ้างด้วยการใช้ขอบด้านหนึ่ง

Fig. l.12 หน้าจอกำหนดจุดอ้าง

ค่าต้น

ฟังก์ชันค่าต้นทำให้ผู้ปฏิบัติงานสามารถระบุตำแหน่ง (เป้าหมาย) ที่กำหนดสำหรับการเคลื่อนที่ถัดไป ทันทีที่ป้อนข้อมูลของตำแหน่งที่กำหนดใหม่ จอแสดงผลจะสลับไปที่ใหมดค่าระยะที่ต้องเคลื่อนที่ และแสดงระยะระหว่างตำแหน่ง ณ ขณะนี้ และตำแหน่งที่กำหนด ในขณะนี้ผู้ปฏิบัติงานเพียงแค่ย้ายแท่นวางจนกระทั่งจอแสดงผลเป็นค่าศูนย์ และเครื่องมือก็จะอยู่ตำแหน่งที่กำหนดตามที่ต้องการ

คุณสามารถป้อนข้อมูลที่ตั้งของตำแหน่งที่กำหนดค่าเป็นการเคลื่อนที่สัมบูรณ์จากค่าศูนย์ ณ จุดอ้างขณะนั้น หรือเป็นการเคลื่อนที่ส่วนเพิ่มจากตำแหน่งที่กำหนดในปัจจุบัน

การตั้งค่าต้นยังช่วยให้ผู้ปฏิบัติงานสามารถกำหนดว่าจะให้ด้านใดของเครื่องมือทำงานบนเครื่องจักร ณ ตำแหน่งที่กำหนด ปุ่ม R+/- ในฟอร์ม ค่าต้น จะกำหนดค่าชดเชยซึ่งจะใช้ในขณะที่เลื่อนเครื่องมือ R+ แสดงให้ทราบว่าแนวเส้นศูนย์กลางของเครื่องมือ ณ ขณะนี้อยู่ในทิศทางบวกมากกว่าค่าขอบของเครื่องมือ R -แสดงให้เห็นว่าแนวเส้นศูนย์กลางของเครื่องมืออยู่ในทิศทางลบมากกว่าค่าขอบ ณ ขณะนี้ การใช้ค่าชดเชย R+/-จะปรับค่าระยะที่ต้องเคลื่อนที่โดยอัตโนมัติ เพื่อนับรวมเข้ากับค่าเส้นผ่าศูนย์กลางของเครื่องมือ ดู Fig. 1.13

ค่าต้นระยะสัมบูรณ์

ตัวอย่าง: งานกัดบ่าโดยการเคลื่อนที่ข้ามไปเพื่อแสดงค่าศูนย์โดยใช้ตำแหน่งสัมบูรณ์

พิกัดจะถูกป้อนค่าเป็นการวัดขนาดแบบสัมบูรณ์; จุดอ้างคือค่าศูนย์ของชิ้นงาน ดู Fig. 1.14 และ Fig. 1.15

มุม 1: X = 0 / Y = 1 มุม 2: X = 1.50 / Y = 1 มุม 3: X = 1.50 / Y = 2.50 มุม 4: X = 3.00 / Y = 2.50

and the

การกดปุ่มแกนจะเป็นการเรียกต้นที่ป้อนครั้งล่าสุดของแกนนั้น

Fig. I.14 ค่าต้นรอบเดี่ยว

การเตรียมการ:

- 🕨 เลือกเครื่องมือด้วยข้อมูลเครื่องมือที่เหมาะสม
- จัดตำแหน่งเครื่องมือล่วงหน้าในตำแหน่งที่เหมาะสม (เช่น X = Y = -1 นิ้ว)
- 🕨 เลื่อนเครื่องมือไปยังระยะลึกของงานกัด

กดปุ่ม**กำหนด/คศาศูนยฬ** เพื่อให้คุณอยู่ในโหมดกำหนด

กดปุ่มแกน Y

ป้อนค่าตำแหน่งที่กำหนดสำหรับจุดมุม 1: Y = 1" และเลือกการชดเชยรัศมีเครื่องมือ R + ด้วยปุ่ม R+/-กดปุ่มจนกระทั่ง R+ จะแสดงถัดจากฟอร์มแกน

กด ENTER

เลื่อนไปตามแกน Y จนกระทั่งค่าจอแสดงผลเป็นศูนย์ สี่เหลี่ยมจัตุรัสในการเตือนใกล้ค่าศูนย์ขณะนี้จะอยู่กึ่งกลางกลางระหว่างเครื่องหมายรูปสามเหลี่ยมทั้งสองรูป

กดปุ่ม**กำหนด/คศาศูนยฬ** เพื่อให้คุณอยู่ในโหมดกำหนด

กดปุ่มแกน X

ป้อนค่าตำแหน่งที่กำหนดสำหรับจุดมุม 2: x = +1.5" เลือกการชดเชยรัศมีเครื่องมือ R - ด้วยปุ่ม R+/-กดปุ่มจนกระทั่ง R- จะแสดงถัดไปจากฟอร์มแกน

กด ENTER

เสื่อนไปตามแกน X จนกระทั่งค่าจอแสดงผลเป็นศูนย์ สี่เหลี่ยมจัตุรัลในการเตือนใกล้ค่าศูนย์ขณะนี้จะอยู่กึ่งกลางกลางระหว่างเครื่องหมายรูปสามเหลี่ยมทั้งสองรูป

ค่าต้นสามารถป้อนได้ในลักษณะเดียวกับการป้อนค่ามุม 3 และมุม 4

D:0| T:1 |F: 0.0| 0:00| นิ้ว | INC | |กำหนด

Fig. l.15 หน้าจอค่าต้น

ค่าต้นระยะส่วนเพิ่ม

ตัวอย่าง: การเจาะโดยการเคลื่อนที่ข้ามไปเพื่อแสดงค่าศูนย์ด้วยตำแหน่งส่วนเพิ่ม

ป้อนค่าพิกัดในการวัดขนาดส่วนเพิ่ม ซึ่งจะแสดงให้เห็นดังนี้ (และบนหน้าจอ) โดยนำหน้าด้วยอักษร I (ส่วนเพิ่ม) จุดอ้างคือค่าศูนย์ของขึ้นงาน ดู Fig. I.16 และ Fig. I.17

ฐ 1 ที่: X = 1" / Y = 1"

ระยะจากรู 1 ไปยังรู 2: XI = 1.5" / YI = 1.5"

ระยะลึกของรู: Z = −0.5"

โหมดการใช้งาน: **ระยะทีศตษองภคลืศอนทีศ** (INC)

กดปุ่มแกน X

l – 2 การใช้งานเฉพาะงานกัด

. ป้อนค่าตำแหน่งที่กำหนดสำหรับรู 1: X = 1" และตรวจดูให้แน่ใจว่าไม่มีการชดเซยรัศมีเครื่องมือทำงานอยู่ โปรดทราบว่า ค่าต้นเหล่านี้คือ ค่าต้นสัมบูรณ์

กดปุ่มแกน Y

ป้อนค่าตำแหน่งที่กำหนดสำหรับรู 1: Y = 1"

ตรวจดูให้แน่ใจว่าไม่มีการชดเชยรัศมีเครื่องมือแสดงอยู่

กดปุ่มแกน Z

ป้อนค่าตำแหน่งที่กำหนดสำหรับระยะลึกรู: Z = -0.5" กดปุ่ม ENTER บนตัวเครื่อง

รูเจาะ 1: เคลื่อนที่ข้ามแกน X, Y และ Z จนกระทั่งค่าจอแสดงผลคือค่าศูนย์ สี่เหลี่ยมจัตุรัสในการเตือนใกล้ค่าศูนย์ขณะนี้จะอยู่กึ่งกลางกลางระหว่างเครื่องหมายรูปสามเหลี่ยมทั้งสองรูป ถอยตัวเจาะ

การกำหนดค่าต้นของตำแหน่งรู 2:

กดปุ่มแกน X

้ ป้อนค่าตำแหน่งที่กำหนดสำหรับรู 2: X = 1.5" ทำเครื่องหมายอินพุตของคุณเป็นการวัดขนาดส่วนเพิ่ม กดปุ่ม I

กดปุ่มแกน Y

ป้อนค่าตำแหน่งที่กำหนดสำหรับรู 2: Y = 1.5" ทำเครื่องหมายอินพุตของคุณเป็นการวัดขนาดส่วนเพิ่ม กดปุ่ม **I**

กด ENTER

เลื่อนไปตามแกน X และ Y จนกระทั่งค่าจอแสดงผลเป็นศูนย์ สี่เหลี่ยมจัตุรัลในการเดือนใกล้ค่าศูนย์ขณะนี้จะอยู่กึ่งกลางกลางระหว่างเครื่องหมายรูปสามเหลี่ยมทั้งสองรูป

การกำหนดค่าต้นของแกน Z

กดปุ่มแกน Z

กดปุ่ม ENTER (ใช้ค่าต้นล่าสุดที่ป้อน)

รูเจาะ 2: เคลื่อนที่ข้ามแกน Z จนกระทั่งค่าจอแสดงผล คือ ค่าศูนย์ สี่เหลี่ยมจัตุรัสในการเตือนใกล้ค่าศูนย์ขณะนี้จะอยู่กึ่งกลางกลางระหว่างเครื่องหมายรูปสามเหลี่ยมทั้งสองรูป

ถอยตัวเจาะ

Fig. I.16 ตัวอย่างการเจาะ

_ค่าต้น- XI	ค่าต้น 1.5000	X 0.00 Y 0.00 Z 0.00	
YI Z	1.5	ป้อนค่าตำแห จากนั้นเลือก ชนิด (D, ค่าชดเชยรัศ ของเครื่องมื	^{ກນ່ວ} Y
I	R +/-		วิธีใช้)

Fig. I.17 หน้าจอส่วนเพิ่ม

12

ปุ่ม 1/2 บนตัวเครื่อง

ปุ่ม 1/2 บนตัวเครื่องใช้สำหรับหาเส้นกลาง (หรือจุดกึ่งกลาง) ระหว่างสองตำแหน่งตลอดแกนของชิ้นงานที่เลือก คุณสามารถใช้วิธีดังกล่าวได้ทั้งในโหมดค่าจริง หรือค่าระยะที่ต้องเคลื่อนที่

คุณสมบัตินี้จะเปลี่ยนตำแหน่งจุดอ้างเมื่ออยู่ในโหมดค่าจริง

ปุ่ม รูปแบบวงกลม และ รูปแบบเส้นตรง บนตัวเครื่อง

เนื้อหาในส่วนนี้อธิบายเกี่ยวกับฟังก์ชันรูปแบบรูของรูปแบบวงกลมและรูปแบบเส้นตรง

กดปุ่ม รูปแบบวงกลม หรือ รูปมบบภสษนตรง บนตัวเครื่องเพื่อเข้าเลือกฟังก์ขันรูปแบบแล้วป้อนข้อมูลที่จำเป็น VUE จะคำนวณตำแหน่งของรูทั้งหมดและแสดงรูปแบบด้วยภาพบนหน้าจอ

คุณสมบัติ ดูการแสดงผลด้วยภาพ ช่วยให้สามารถตรวจสอบรูปแบบรูก่อนที่คุณจะเริ่มใช้งานเครื่องจักร อีกทั้งยังมีประโยชน์สำหรับ: การเลือกรูโดยตรง, ใช้งานรูแยกกัน และการข้ามผ่านรู

ฟังก์ชันสำหรับรูปแบบงานกัด

ฟังก์ชัน	ปุ่ม
กดเพื่อดูโครงร่างของรูปแบบปัจจุบัน	ନ
กดเพื่อไปยังรูก่อนหน้า	รูก่อน
กดเพื่อเลื่อนไปยังรูถัดไปด้วยตนเอง	รูถัดไป
กดเพื่อสิ้นสุดการเจาะ	สิ้นสุด

ตัวอย่าง: ป้อนค่าข้อมูลและเจาะรูปแบบวงกลม ดู Fig. 1.18 และ Fig. 1.19

รู (จำนวน): 4 พิกัดของศูนย์กลาง: X = 2.0" / Y = 1.5" รัศมีวงกลมของสลัก: 5 มุมเริ่มต้น: มุมระหว่างแกน X และรูแรก: 25? ระยะลึกรู: Z = -0.25"

ขั้นตอนที่ 1: ป้อนข้อมูล

กดปุ่ม รูปมบบวงกลม บนตัวเครื่อง

ป้อนค่าชนิดของรูปแบบวงกลม (เต็ม) เลื่อนเคอร์เซอร์ไปที่ช่องถัดไป

ป้อนค่าจำนวนรู (4)

ป้อนค่าพิกัด X และ Y ของศูนย์กลางวงกลม (X = 2.0), (Y = 1.5) เลื่อนเคอร์เซอร์ไปที่ช่องถัดไป

ป้อนค่ารัศมีของรูปแบบวงกลม (5)

ป้อนค่ามุมเริ่ม (25?)

้ ป้อนค่ามุมสิ้นสุด (295?) (ค่านี้สามารถเปลี่ยนแปลงได้หากป้อนค่า "ส่วนตัด") มุมสิ้นสุดคือมุมเริ่มจากแกน X บวกและสิ้นสุดที่รูปแบบ

ป้อนค่าระยะลึกหากต้องการ ระยะลึกของรูเป็นตัวเลือก และอาจจะเว้นว่างไว้ได้ ถ้าไม่ต้องการ กด ENTER

มุมมองมีอยู่ 3 มุมมองดังนี้: DRO แบบส่วนเพิ่ม, ภาพของรูปแบบ และ DRO แบบค่าสัมบูรณ์ กดปุ่ม **มุมมอ§** เพื่อสลับไปยังหน้าจอต่างๆ ที่มีอยู่

ขั้นตอนที่ 2: เจาะรู

เลื่อนไปยังรู:

เลื่อนไปตามแกน X และ Y จนกระทั่งค่าจอแสดงผลเป็นศูนย์

เจาะรู:

เลื่อนเครื่องมือไปจนหน้าจอแสดงค่าศูนย์ในแกนเครื่องมือ หลังจากการเจาะถอยตัวเจาะรูในแกนเครื่องมือ

กดปุ่ม **รูถัดฤป**

ทำการเจาะรูที่เหลือต่อไปด้วยวิธีเดียวกัน

เมื่อรูปแบบเสร็จสมบูรณ์ กดปุ่ม **สิษนสุ**

D:0| T:1 |F: 0.0| 0:00| นิ้ว | INC | รูปแบบวงกลม บนิด เด็ม รูปแบบวงกลม มีอนพิกัดศ.ก.วงกลม มีอนพิกัดครารางกลม มีอนพิกัดครารางกลม

Fig. I.18 หน้าเริ่มต้นของฟอร์มรูปแบบวงกลม

D:O| T:1 |F: 0.0| 0:00| ນິ້ວ| INC | 🛲|

Fig. I.19 หน้าที่ 2 ของฟอร์มรูปแบบวงกลม

รูปแบบเส้นตรง

- 🔳 ชนิดของรูปแบบเส้นตรง (แถวลำดับ หรือแบบเฟรม)
- 🔳 รูที่ 1 (รูที่ 1 ของรูปแบบ)
- 🔳 รูต่อแถว (จำนวนรูในแต่ละแถวของรูปแบบ)
- 🔳 ระยะเว้นรู (ระยะเว้นหรือค่าชดเชยระหว่างแต่ละรูในแถว)
- 🔳 มุม (มุมหรือการหมุนของรูปแบบ)
- 🔳 ระยะลึก (ระยะลึกเป้าหมายสำหรับการเจาะในแกนเครื่องมือ)
- 🔳 จำนวนแถว (จำนวนแถวในรูปแบบ)
- 🔲 ระยะเว้นของแถว (ระยะเว้นระหว่างแต่ละแถวของรูปแบบ)

ข้อมูลที่ต้องป้อนและการใช้งานคุณสมบัติรูปแบบเส้นตรงจะคล้ายกับคุณสมบัติของรูปแบบรูที่กล่าวไว้ก่อนหน้า

Fig. I.20 ตัวอย่างรูปแบบเส้นตรง

งานกัดเอียงและงานกัดโค้ง

คุณสมบัติงานกัดเอียงและงานกัดโค้งช่วยให้คุณสามารถทำงานกัดกับพื้นผิวเรียบเอียง (งานกัดเอียง) หรือพื้นผิวโค้งกลม (งานกัดโค้ง) ได้ด้วยการใช้เครื่องแมนนวล

ปุ่มต่อไปนี้จะปรากฏในฟอร์มการป้อนค่า

ฟังก์ชัน	ปุ่ม
กดปุ่มนี้เพื่อเลือกระนาบ	ระนาบ [XY]
กดปุ่มนี้เพื่อการทำงานงานกัด	เดินเครื่อง
กดปุ่มนี้เพื่อใช้ตำแหน่งที่มีอยู่	(คำนวณ
กดปุ่มนี้เพื่อไปยังขั้นตอนก่อนหน้า	ผ่าน ขั้นก่อนหน้า
กดปุ่มนี้เพื่อไปยังขั้นตอนถัดไป	ู้ ผ่าน ขั้นถัดไป

งานกัดเอียง

ฟอร์มการป้อนค่า: (ดู Fig. I.21 ฟอร์มการป้อนค่า: จุดเริ่ม) และ(Fig. I.22 ฟอร์มการป้อนค่า: จุดสิ้นสุด)

ฟอร์ม งานกัดเอียง ใช้สำหรับกำหนดพื้นผิวเรียบที่จะทำการกัด กดปุ่ม งานกัดภอียง บนตัวเครื่องเพื่อเปิดฟอร์ม

- ระนาบ เลือกระนาบโดยการกดปุ่ม ระนาบ ค่าที่เลือกในบัจจุบันจะแสดงบนปุ่มและในช่องระนาบ ภาพในบ็อกซ์ข้อความจะช่วยให้คุณเลือกระนาบที่ถูกต้อง
- 📕 **จุดเริ่ม**: ป้อนระยะพิกัดของจุดเริ่มหรือกด คำนวณ เพื่อกำหนดระยะพิกัดโดยใช้ตำแหน่งปัจจุบัน
- 📕 จุดสิ้นสุด: ป้อนระยะพิกัดของจุดสิ้นสุดหรือกด คำนวณ เพื่อกำหนดระยะพิกัดโดยใช้ตำแหน่งปัจจุบัน
- 📕 Step: ป้อนขนาด Step ในงานกัด นี่คือค่าระยะระหว่างแต่ละจุดที่ผ่านหรือแต่ละ Step ตลอดความยาวเส้น

ขนาด Step จะป้อนหรือไม่ก็ได้ หากมีค่าเป็นศูนย์ ผู้ปฏิบัติงานจะต้องตัดสินใจในระหว่างปฏิบัติงานว่าจะเลื่อนเครื่องมือระหว่าง Step เป็นระยะเท่าใด

กด ENTER หรือ **ภดินภครีศอง** เพื่อเริ่มงานกัดผิว กด C เพื่อออกโดยไม่ดำเนินการกัดผิว การตั้งค่าต่างๆ จะยังคงอยู่จนกว่าจะมีการปิดแหล่งจ่ายไฟ

การดำเนินการ

- เริ่มงานกัดโดยเปิดฟอร์มการป้อนค่าและกดปุ่ม ภดินภครีศอง หรือปุ่ม ENTER หน้าจอจะสลับไปที่มุมมอง DRO แบบส่วนเพิ่ม
- ในระยะแรกจะแสดงระยะเลื่อนแบบส่วนเพิ่มปัจจุบันจากจุดเริ่ม เลื่อนไปที่จุดเริ่มและตัดในครั้งเดียวหรือตัดขวางพื้นผิวรอบแรก กดปุ่ม ผศานขัษนถัดถุป เพื่อดำเนินการต่อไปยัง Step ถัดไปในเส้นโครงร่าง
- 📕 หลังจากที่กด **ผศานขัษนถัดถุป** การแสดงส่วนเพิ่มจะแสดงระยะจาก Step ถัดไปตามเส้นโครงร่างของเส้น
- หากไม่มีการระบุขนาด Step การแสดงส่วนเพิ่มจะแสดงระยะจากจุดที่อยู่ใกล้ที่สุดบนเส้นนั้นเสมอ ในการกัดไปตามเส้นโครงร่าง ให้เลื่อนแกนทั้งสองในแต่ละ Step เล็กๆ รักษาตำแหน่ง (X,Y) ให้ใกล้กับ 0 มากที่สุด

Fig. I.22 ฟอร์มการป้อนค่า: จุดสิ้นสุด

- ในงานกัดผิว จะมีมุมมองอยู่ 3 มุมมองดังนี้: DRO แบบส่วนเพิ่ม, เส้นโครงร่าง และ DRO แบบค่าสัมบูรณ์ กดปุ่ม มุมมอง เพื่อสลับไปยังหน้าจอต่างๆ ที่มีอยู่
- มุมมองเส้นโครงร่างจะแสดงตำแหน่งของเครื่องมือที่สัมพันธ์กับผิวงานกัด เมื่อครอสแซร์สั-ลักษณ์ของเครื่องมืออยู่บนเส้นที่เป็นสั-ลักษณ์พื้นผิว แสดงว่าเครื่องมืออยู่ในตำแหน่งที่ถูกต้อง ครอสแซร์เครื่องมือจะคงอยู่ในตำแหน่งกึ่งกลางของกราฟ เมื่อแท่นเคลื่อนที่ เส้นผิวดังกล่าวจะเคลื่อนตามไปด้วย
- 🔳 กดปุ่ม สิษนสุด เพื่อออกจากงานกัด

เครื่องจะใช้การขดเซยรัศมีของเครื่องมือตามค่ารัศมีของเครื่องมือปัจจุบัน หากการเลือกระนาบเกี่ยวข้องกับแกนเครื่องมือ เครื่องจะสันนิษฐานว่าจุดปลายของเครื่องมือมีปลายใค้ง

เครื่องจะใช้ทิศการชดเชยเครื่องมือ (R+ หรือ R-) ตามตำแหน่งเครื่องมือ ผู้ปฏิบัติงานจะต้องเลื่อนเครื่องมือไปตามผิวโครงร่างจากทิศทางที่เหมาะสมเพื่อให้เกิดการชดเช ยเครื่องมืออย่างถูกต้อง

งานกัดโค้ง

ฟอร์มการป้อนค่า: (ดู Fig. 1.23 ฟอร์มการป้อนค่า: จุดศูนย์กลาง), (Fig. 1.24 ฟอร์มการป้อนค่า: จุดเริ่ม) และ(Fig. 1.25 ฟอร์มการป้อนค่า: รัศมี)

ฟอร์มงานกัดโค้ง ใช้สำหรับกำหนดพื้นผิวโค้งที่จะทำการกัด กดปุ่ม งานกัดยคษง บนตัวเครื่องเพื่อเปิดฟอร์ม

- การเลือกระนาบ: เลือกระนาบโดยการกดปุ่ม ระนาบ ค่าที่เลือกในปัจจุบันจะแสดงบนปุ่มและในช่องระนาบ ภาพในบ็อกซ์ข้อความจะช่วยให้คุณเลือกระนาบที่ถูกต้อง
- 📕 จุดศูนย์กลาง: ป้อนระยะพิกัดของจุดศูนย์กลางของเส้นโค้ง
- 🔳 จุดเริ่ม: ป้อนระยะพิกัดของจุดเริ่ม
- 📕 จุดสิ้นสุด: ป้อนระยะพิกัดของจุดสิ้นสุด
- 🔳 รัศมี: ป้อนค่ารัศมีของรูปเส้นโค้ง
- Step: ป้อนขนาด Step ในงานกัด นี่คือค่าระยะตามเส้นรอบวงของเส้นโค้งระหว่างแต่ละจุดที่ผ่านหรือแต่ละ Step ตลอดความยาวเส้นโครงร่างของเส้นโค้ง

ขนาด Step จะป้อนหรือไม่ก็ได้ หากมีค่าเป็นศูนย์

ผู้ปฏิบัติงานจะต้องตัดสินใจในระหว่างปฏิบัติงานว่าจะเลื่อนเครื่องมือระหว่าง Step เป็นระยะเท่าใด

กดปุ่ม ENTER หรือ **ภดินภครีศอง** เพื่อดำเนินงานกัด กด C เพื่อออกจากฟอร์มโดยไม่ดำเนินการกัดผิว การตั้งค่าต่างๆ จะยังคงอยู่จนกว่าจะมีการปิดแหล่งจ่ายไฟ

การดำเนินการ

- เริ่มงานกัดโดยเปิดฟอร์มการป้อนค่าและกดปุ่ม ภตินภครีศอง หรือปุ่ม ENTER หน้าจอจะสลับไปที่มุมมอง DRO แบบส่วนเพิ่ม
- ในระยะแรก DRO จะแสดงระยะส่วนเพิ่มปัจจุบันจากจุดเริ่ม เลื่อนไปที่จุดเริ่มและตัดในครั้งเดียวหรือตัดขวางพื้นผิวรอบแรก กดปุ่ม ผศานขัษนถัดฤป เพื่อดำเนินการต่อไปยัง Step ถัดไปในเส้นโครงร่าง
- 📕 หลังจากที่กด **ผศานขัษนถัดถุป** การแสดงส่วนเพิ่มจะแสดงระยะจาก Step ถัดไปตามเส้นโครงร่างของเส้นโค้ง
- หากไม่มีการระบุขนาด Step การแสดงส่วนเพิ่มจะแสดงระยะจากจุดที่อยู่ใกล้ที่สุดบนเส้นโค้งนั้นเสมอ ในการกัดไปตามเส้นโครงร่าง ให้เลื่อนแกนทั้งสองในแต่ละ Step เล็กๆ รักษาตำแหน่ง (X,Y) ให้ไกล้กับ 0 มากที่สุด
- ในงานกัดผิว จะมีมุมมองอยู่ 3 มุมมองดังนี้: DRO แบบส่วนเพิ่ม, เส้นโครงร่าง และ DRO แบบค่าสัมบูรณ์ กดปุ่ม มุมมอง เพื่อสลับไปยังหน้าจอต่างๆ ที่มีอยู่

Fig. I.24 ฟอร์มการป้อนค่า: จุดเริ่ม

D:O| T:1 |F: 0.0| 0:00| ນິ້ວ | ABS | 🖅 |

Fig. I.25 ฟอร์มการป้อนค่า: รัศมี

- มุมมองเส้นโครงร่างจะแสดงตำแหน่งของเครื่องมือที่สัมพันธ์กับผิวงานกัด เมื่อครอสแซร์สั-ลักษณ์ของเครื่องมืออยู่บนเส้นที่เป็นสั-ลักษณ์พื้นผิว แสดงว่าเครื่องมืออยู่ในตำแหน่งที่ถูกต้อง ครอสแซร์เครื่องมือจะคงอยู่ในตำแหน่งกึ่งกลางของกราฟ เมื่อแท่นเคลื่อนที่ เส้นผิวดังกล่าวจะเคลื่อนตามไปด้วย
- 🔳 กดปุ่ม **สิษนสุด** เพื่อออกจากงานกัด

吵

เครื่องจะใช้การชดเซยรัศมีของเครื่องมือตามค่ารัศมีของเครื่องมือปัจจุบัน หากการเลือกระนาบเกี่ยวข้องกับแกนเครื่องมือ เครื่องจะสันนิษฐานว่าจุดปลายของเครื่องมือมีปลายโค้ง

เครื่องจะใช้ทิศการชดเชยเครื่องมือ (R+ หรือ R-) ตามตำแหน่งเครื่องมือ ผู้ปฏิบัติงานจะต้องเลื่อนเครื่องมือไปตามผิวโครงร่างจากทิศทางที่เหมาะสมเพื่อให้เกิดการชดเช ยเครื่องมืออย่างถูกต้อง

I – 3 การใช้งานเฉพาะงานกลึง

ในหมวดนี้จะอธิบายการดำเนินการเฉพาะกับการใช้งานกลึงเท่านั้น

ตารางเครื่องมือ

VUE สามารถเก็บการวัดขนาดค่าชดเซยได้ถึง 16 เครื่องมือ เมื่อคุณเปลี่ยนชิ้นงานและสร้างจุดอ้างใหม่ เครื่องมือทั้งหมดจะอ้างอิงจากจุดอ้างใหม่โดยอัตโนมัติ

ก่อนที่คุณจะสามารถใช้เครื่องมือ คุณต้องป้อนค่าชดเชยของเครื่องมือเสียก่อน (คำแหน่งขอบตัด) การชดเชยเครื่องมือสามารถกำหนดโดยใช้คุณสมบัติ เครื่องมือ/กำหนด หรือ ล็อคแกน โปรดดูคำแนะนำในการตั้งค่าการชดเชยเครื่องมือ (ดู Fig. 1.26) จากตัวอย่างดังต่อไปนี้

ไอคอนที่แสดงของเครื่องมือ

ไอคอน ? ใช้แสดงให้ทราบว่า ค่าที่ปรากฏอยู่คือเส้นผ่าศูนย์กลาง หากไม่มีไอคอนแสดงว่า ค่าที่แสดงคือค่ารัศมี

การตั้งค่าชดเชยเครื่องมือ ตัวอย่าง 1: โดยใช้ เครื่องมือ/กำหนด

คุณสามารถใช้งาน เครื่องมือ/กำหนด

์เพื่อกำหนดการชดเซยเครื่องมือโดยใช้เครื่องมือเมื่อทราบเส้นผ่าศูนย์กลางของชิ้นงาน แตะเส้นผ่าศูนย์กลางที่ทราบในแกน X (1) กดปุ่ม ภครีศองมือ บนตัวเครื่อง เลื่อนไปที่เครื่องมือที่ต้องการ กดปุ่ม ENTER เลือกปุ่มแกน (X)

ป้อนค่าตำแหน่งจุดปลายของเครื่องมือ เช่น X= .100

โปรดอย่าลืมตรวจสอบว่า VUE อยู่ในโหมดแสดงเส้นผ่าศูนย์กลาง (?) หากคุณป้อนค่าเส้นผ่าศูนย์กลาง แตะผิวหน้าขึ้นงานด้วยเครื่องมือ เสื่อนเคอร์เซอร์ไปที่แกน Z (2) จากนั้นกำหนดการแสดงตำแหน่งสำหรับจุดปลายเครื่องมือที่ค่าศูนย์ Z=0 กด ENTER

D:0| T:1 |F: 0.0| 0:00| นิ้ว | ABS | 🛲 |

Fig. I.26 ตารางเครื่องมือในงานกลึง

Fig. 1.27

การตั้งค่าชดเชยเครื่องมือ ตัวอย่าง 2: โดยใช้ฟังก์ชัน ล็อคแกน

พังก์ชัน ล็อคแกน สามารถใช้เพื่อกำหนดค่าชดเชยเครื่องมือ เมื่อเครื่องมืออยู่ในเครื่อง และไม่ทราบเส้นผ่าศูนย์กลางของชิ้นงาน ดูรูป Fig. 1.28

ฟังก์ชัน ล็อคแกน จะมีประโยชน์เมื่อมีการหาข้อมูลเครื่องมือโดยการแตะชิ้นงาน เพื่อหลีกเลี่ยงการสู-หายของค่าตำแหน่งเมื่อถอยเครื่องมือออกเพื่อวัดชิ้นงาน คุณสามารถเก็บค่านี้ได้โดยการกด **ลวอคมกน**

ในการใช้ฟังก์ชันล็อคแกน:

กดปุ่ม ภศรีศองมือ บนตัวเครื่อง เลือกเครื่องมือแล้วกด ENTER กดปุ่มแกน X กลึงแกน X ให้มีเส้นผ่าศูนย์กลางตามที่กำหนด กดปุ่ม **ลวอคมกน** ในขณะที่เครื่องมือยังคงทำการกลึงอยู่ ถอยเครื่องจากตำแหน่งขณะนั้น ปิดตัวแกนหมุนแล้ววัดเส้นผ่าศูนย์กลางของขึ้นงาน ป้อนเส้นผ่าศูนย์กลางหรือรัศมีที่วัดได้ แล้วกด ENTER ดูรูป Fig. 1.29

โปรดอย่าลืมตรวจสอบว่า VUE อยู่ในโหมดแสดงเส้นผ่าศูนย์กลาง (?) หากคุณป้อนค่าเส้นผ่าศูนย์กลาง

การเรียกเครื่องมือจากตารางเครื่องมือ

ในการเรียกเครื่องมือหนึ่ง ให้กดปุ่ม ภครีศองมือ บนตัวเครื่อง ใช้ปุ่มลูกคร ขีษน/ลง เสื่อนเคอร์เซอร์ไปยังรายการตัวเลือกเครื่องมือต่างๆ (1-16) เลื่อนแถบสีมาที่เครื่องมือที่คุณต้องการ ตรวจสอบว่าได้เรียกเครื่องมือที่ถูกต้องมาใช้ แล้วกดปุ่ม **รชษภครีศองมือ** บนตัวเครื่องหรือกดปุ่ม C เพื่อออก

Fig. I.28 การตั้งค่าการชดเชยเครื่องมือ

Fig. I.29 ฟอร์มเครื่องมือ/กำหนด

การตั้งค่าจุดอ้าง

การตั้งค่าจดอ้างจะกำหนดความสัมพันธ์ระหว่างตำแหน่งแกนและค่าที่แสดง สำหรับการใช้งานเครื่องกลึงส่วนให-ำะมีเพียงจุดอ้างแกน X เพียงหนึ่งแกน นั่นก็คือ ศูนย์กลางของตัวยึด แต่การกำหนดจุดอ้างเพิ่มเติมสำหรับแกน Z อาจมีประโยชน์ในการทำงาน ตารางสามารถเก็บค่าจุดอ้างได้ถึง 10 ค่า วิธีที่ง่ายที่สุดที่จะกำหนดจุดอ้าง คือ การแตะชิ้นงานที่เส้นผ่าศูนย์กลางหรือตำแหน่งที่ทราบค่าแล้ว จากนั้นป้อนค่าขนาดนั้นเป็นค่าซึ่งจอแสดงผลควรจะแสดง

้ตัวอย่าง: การตั้งค่าจุดอ้างอิงชิ้นงาน

การเตรียมการ:

เรียกข้อมูลของเครื่องมือโดยการเลือกเครื่องมือที่คุณจะใช้เพื่อแตะชิ้นงาน กดปุ่ม จุดอษาง บนตัวเครื่อง เคอร์เซอร์จะอยู่ในช่อง เลขที่จุดอ้าง ป้อนค่าเลขที่จุดอ้าง และกดปุ่ม ลูกศรลง เพื่อไปยังช่องของแกน X แตะชิ้นงานที่จุด 1 ป้อนค่าเส้นผ่าศูนย์กลางหรือรัศมีของชิ้นงาน ณ จุดนั้น

โปรดอย่าลืมตรวจสอบว่า VUE อยู่ในโหมดแสดงเส้นผ่าศูนย์กลาง (?) หากคุณป้อนค่าเส้นผ่าศูนย์กลาง กดปุ่ม ลูกศรลง เพื่อข้ามไปที่แกน Z

แตะผิวชิ้นงานที่จุด 2 ป้อนค่าตำแหน่งของจุดปลายของเครื่องมือ (Z = 0) สำหรับพิกัด Z ของจุดอ้าง กด ENTER

การตั้งค่าจุดอ้างชิ้นงาน Fig. 1.30

การตั้งค่าจุดอ้างโดยใช้ฟังก์ชัน ล็อคแกน

พังก์ชัน ล็อคแกน มีประโยชน์ในการตั้งค่าจุดอ้างเมื่อเครื่องมืออยู่ในเครื่องและไม่ทราบเส้นผ่าศูนย์กลางของชิ้นงาน ดูรูป Fig. I.31

ในการใช้ฟังก์ชันล็อคแกน:

กดปุ่ม จุดอษาง บนตัวเครื่อง เคอร์เซอร์จะอยู่ในช่อง เลขที่จุดอ้าง ป้อนค่าตัวเลขที่จุดอ้างและกดปุ่ม ลูกศรลง เพื่อไปยังช่องของแกน X กลึงแกน X ให้มีเส้นผ่าศูนย์กลางตามที่กำหนด กดปุ่ม **ลวอคมกน** ้ในขณะที่เครื่องมือยังคงทำการกลึงอยู่ ถอยเครื่องจากตำแหน่งขณะนั้น

ปิดตัวแกนหมุนแล้ววัดเส้นผ่าศูนย์กลางของชิ้นงาน ป้อนค่าเส้นผ่าศูนย์กลางที่จะวัด ตัวอย่าง เช่น 1.5" และกด ENTER

Fig. I.31

การตั้งค่าจุดอ้างโดยใช้ ล็อคแกน

l – 3 การใช้งานเฉพาะงานกลึง

ปุ่มเครื่องคำนวณความเรียวบนตัวเครื่อง

คุณสามารถคำนวณความเรียวได้ด้วยการป้อนค่าขนาดจากแบบพิมพ์ หรือด้วยการแตะชิ้นงานที่เรียวด้วยเครื่องมือหรือตัวชี้วัด

ใช้เครื่องคำนวณความเรียวเพื่อคำนวณมุมของความเรียว ดู Fig. 1.33 และ Fig. 1.34

ค่าที่ป้อน:

สำหรับอัตราส่วนความเรียว การคำนวณต้องการค่า:

🍽 การเปลี่ยนแปลงในรัศมีของความเรียว

🔳 ความยาวของความเรียว

สำหรับการคำนวณความเรียวซึ่งใช้ทั้งเส้นผ่าศูนย์กลาง (D1, D2) และความยาวนั้นต้องการค่า:

🔳 เส้นผ่าศูนย์กลางเริ่มต้น

🔳 เส้นผ่าศูนย์กลางสุดท้าย

📕 ความยาวของความเรียว

กดปุ่ม คำนวณ บนตัวเครื่อง

การเลือกปุ่มจะเปลี่ยนเป็นรวมฟังก์ชันการคำนวณความเรียวด้วย

การคำนวณมุมความเรียวโดยใช้เส้นผ่าศูนย์กลาง 2 ค่า และความยาวระหว่างเส้นผ่าศูนย์กลางนั้น ให้กดปุ่ม ความเรียว: D1/D2/L จุดเรียวจุดที่หนึ่ง เส้นผ่าศูนย์กลาง 1 ให้ป้อนค่าจุดหนึ่งด้วยการใช้ปุ่มตัวเลขแล้วกด ENTER หรือใช้เครื่องแตะจุดๆ หนึ่งแล้วกด บันทึก

ดำเนินการขั้นตอนนี้ซ้ำสำหรับช่อง เส้นผ่าศูนย์กลาง 2

เมื่อใช้ปุ่ม บันทึก เครื่องจะคำนวณมุมความเรียวโดยอัตโนมัติ

ในการป้อนข้อมูลตัวเลข ให้ป้อนข้อมูลในช่อง ความยาว แล้วกด ENTER ค่ามุมความเรียวจะปรากฏในช่อง มุม

ในการคำนวณมุมโดยใช้อัตราส่วนของเส้นผ่าศูนย์กลางให้เปลี่ยนเป็นความยาว แล้วกดปุ่ม **ความภรียว:** อ**ัตราสศวน**

ใช้ปุ่มตัวเลข ป้อนค่าข้อมูลลงในช่อง ค่า 1 และ ค่า 2 กด ENTER หลังจากการเลือกแต่ละครั้ง ค่าอัตราส่วนที่คำนวณได้และมุมจะปรากฏในช่องของค่านั้นๆ

D:0 | T:1 | F: 0.0 | 0:00 | นิ้ว | ABS | | เครื่องคำนวณความเรียว เส้นผ่าศูนย์กลาง D1 3.0000 D2 1.5000 - ความยาว 10.0000 - มุม 4.2892° (คำนวณ) วิธีใช้

Fig. I.33 ฟอร์มเครื่องคำนวณความเรียว - เส้นผ่าศูนย์กลาง 1

D:O| T:1 |F: O.O| O:OO| ນີ້ວ| ABS |

Fig. I.34 ฟอร์มเครื่องคำนวณความเรียว - เส้นผ่าศูนย์กลาง 2

ค่าต้น

ฟังก์ชันค่าดันได้อธิบายไว้ก่อนหน้านี้แล้วในคู่มือเล่มนี้ คำอธิบายและตัวอย่างในหน้าเหล่านั้นสำหรับใช้กับงานกัด คำอธิบายพื้นฐานเหล่านั้นจะเหมือนกันสำหรับการใช้งานงานกลึง แต่มีข้อยกเว้น 2 ประการ คือ การชดเซยเส้นผ่าศูนย์กลางเครื่องมือ (R+/-) และรัคมี เทียบกับ อินพุตของเส้นผ่าศูนย์กลาง

การชดเชยเส้นผ่าศูนย์กลางเครื่องมือจะไม่ใช้กับงานกับเครื่องมืองานกลึง ดังนั้นจะไม่มีฟังก์ชันนี้ในขณะที่คุณกำหนดค่าต้นสำหรับงานกลึง

ค่าที่ป้อนอาจเป็นได้ทั้งค่ารัศมีหรือค่าเส้นผ่าศูนย์กลาง สิ่งสำคั-ก็คือ คุณต้องมั่นใจว่าหน่วยที่คุณป้อนค่าสำหรับค่าต้นนั้นตรงกับสถานะซึ่งจอแสดงผลใช้อยู่ในขณะนั้น ค่าเส้นผ่าศูนย์กลางจะแสดงพร้อมสั-ลักษณ์ ? สถานะของจอแสดงผลสามารถเปลี่ยนแปลงโดยใช้ปุ่ม RAD/DIA (มีในทั้งสองโหมดการใช้งาน)

ปุ่ม Radius/Diameter

แบบเขียนสำหรับขึ้นส่วนเครื่องกลึงโดยปกติจะแสดงค่าเส้นผ่าศูนย์กลาง VUE สามารถแสดงเป็นวัศมีหรือเส้นผ่าศูนย์กลาง สำหรับคุณ เมื่อแสดงเส้นผ่าศูนย์กลาง จะมีเครื่องหมายเส้นผ่าศูนย์กลาง (?) ปรากฏใกล้กับค่าตำแหน่ง ดู Fig. 1.35

ตัวอย่าง: แสดงรัศมี, ตำแหน่ง 1, X = .50

แสดงเส้นผ่าศูนย์กลาง, ตำแหน่ง 1, X = ? 1.0

กดปุ่ม RAD/DIA เพื่อสลับไปมาระหว่างการแสดงรัศมีและเส้นผ่าศูนย์กลาง

Fig. I.35 ชิ้นงานสำหรับแสดงรัศมี/เส้นผ่าศูนย์กลาง

การกำหนดทิศทาง

การกำหนดทิศทางจะแสดงรายละเอียดการเคลื่อนที่ของแกนร่วมในแกนแนวตั้งหรือแนวขวาง ดู Fig. 1.36 ตัวอย่างเช่น ในการกลึงเกลียว การกำหนดทิศทางจะช่วยให้คุณมองเห็นเส้นผ่าศูนย์กลางของเกลียวในการแสดงแกน X แม้ว่าคุณจะเลื่อนเครื่องมือการตัดโดยใช้ล้อหมุนแกนร่วม

การใช้การกำหนดพิศทางจะช่วยให้คุณสามารถกำหนดรัศมีหรือเส้นผ่าศูนย์กลางที่ต้องการในแกน X ไว้ล่วงหน้า เพื่อให้คุณสามารถ "กำหนดค่าเป็นศูนย์" ได้

เมื่อมีการใช้การกำหนดทิศทาง ตัวเข้ารหัสแกนเสื่อนด้านบน (แกนร่วม) จะต้องถูกกำหนดให้กับแกนที่แสดงอยู่ทางด้านล่าง แกนที่แสดงอยู่ทางด้านบนจะแสดงส่วนที่เคลื่อนไหวในแนวตั้งของแกน แกนที่แสดงอยู่ตรงกลางจะแสดงส่วนที่เคลื่อนไหวในแนวขวางของแกน

กดปุ่ม การกำหนดทิศทาง บนตัวเครื่อง

กดปุ่ม **ทำงาน** เพื่อใช้งานคุณสมบัติการกำหนดทิศทาง

เลื่อนลูกศรลงไปที่ช่อง มุม เพื่อป้อนมุมระหว่างแกนเลื่อนแนวขวางและแกนเลื่อนด้านบน โดยที่ 0? จะหมายถึง แกนเลื่อนด้านบนจะเลื่อนขนานไปกับแกนเลื่อนแนวขวาง no ENTER

D:O| T:1 |F: 0.0| 0:00| ນີ້ວ| ABS | |

Fig. I.36 การกำหนดทิศทาง

II – 1 จัดเตรียมการติดตั้ง

พารามิเตอร์จัดเตรียมการติดตั้ง

คุณสามารถเข้าสู่จัดเตรียมการติดตั้งได้โดยการกดปุ่ม **จัดเตรียม** ซึ่งจะทำให้ปุ่ม **จัดเตรียมการติดตั้ง** ปรากฏขึ้น ดู Abb. l.1:

พารามิเตอร์จัดเตรียมการติดตั้งจะถูกสร้างในระหว่างการติดตั้งเริ่มแรก และโดยส่วนให-่จะไม่ค่อยเปลี่ยน ด้วยเหตุผลนี้ พารามิเตอร์จัดเตรียมการติดตั้งจะถูกป้องกันโดยรหัสผ่าน

D:O| T:1 |F: 0.0| 0:00| ນີ້ວ | ABS | |

ก้ำหนดการใช้งาน
ด้วนับ (งานกัด หรือ
งานกุลึง)
และจำนวนแกน
วิธีใช้

Abb. I.1: หน้าจอการติดตั้ง

จัดเตรียมตัวเข้ารหัส

จัดเตรียมตัวเข้ารหัสจะใช้เพื่อกำหนดความละเอียดตัวเข้ารหัส และชนิด (แบบเส้นตรง, แบบหมุน), พิศการนับ, ชนิดเครื่องหมายอ้างอิง ดู Abb. I.2:

- เคอร์เซอร์จะเริ่มต้นที่ช่อง จัดเตรียมตัวเข้ารหัส เมื่อจัดเตรียมการติดตั้งปรากฏขึ้น no ENTER รายการอินพุตตัวเข้ารหัสที่ใช้งานได้จะปรากฏขึ้น
- 🕨 เลื่อนไปที่ตัวเข้ารหัสที่คุณต้องการจะเปลี่ยนและกด ENTER
- 🕨 เคอร์เซอร์จะอยู่ในช่อง ชนิดตัวเข้ารหัส เลือกชนิดตัวเข้ารหัส โดยการกดปุ่ม แบบเส้นตรง/แบบหมุน
- สำหรับตัวเข้ารหัสแบบเส้นตรง เสื่อนเคอร์เซอร์ไปที่ช่อง ความละเอียด และใช้ปุ่ม แบบหยาบ หรือ แบบละเอียด เพื่อเลือกความละเอียดตัวเข้ารหัสในหน่วย ?m (10, 5, 2, 1, 0.5) หรือพิมพ์ความละเอียดที่ต้องการ สำหรับตัวเข้ารหัสแบบหมุน ป้อนจำนวนนับต่อรอบ
- ในช่อง เครื่องหมายอ้างอิง ให้ใช้ปุ่ม เครื่องหมายอ้างอิง สลับเลือก หากตัวเข้ารหัสเป็นแบบไม่มีส้.-าณอ้างอิง ให้เลือกปุ่ม ไม่มี หากมีเครื่องหมายอ้างอิงแบบเดี่ยว ให้เลือกปุ่ม แบบเดี่ยว หรือเลือกปุ่ม P-TRAC สำหรับตัวเข้ารหัสที่มีคุณสมบัติ Position-Trac?
- ในช่องทิศการนับ เลือกทิศการนับ โดยการกดปุ่ม ทางบวก หรือ ทางลบ หากทิศการนับของตัวเข้ารหัสตรงกับทิศการนับของผู้ใช้ ให้เลือก ทางบวก หากทิศการนับไม่ตรงกัน ให้เลือก ทางลบ
- ในช่อง เดือนข้อผิดพลาด ให้เลือกว่าจะให้ระบบเฝ้าดูและแสดงข้อผิดพลาดตัวเข้ารหัสหรือไม่ โดยการเลือก ทำงาน หรือ ไม่ทำงาน เมื่อมีข้อความข้อผิดพลาดเกิดขึ้น ให้กดปุ่ม C เพื่อลบทิ้ง

ᇝ

ความละเอียดตัวเข้ารหัสและทิศการนับสามารถกำหนดได้ด้วยการเลื่อนแกนแต่ละแกน

D:0 | T:1 |F: 0.0 | 0:00 | นิ้ว | ABS | → | จัดเตรียมตัวเข้ารหัส (1) ชนิดของตัวเข้ารหัส แบบเส้นตรง เนบบเส้นตรง หรือแบบหมุนรอบ)

Abb. I.2: ฟอร์มจัดเตรียมตัวเข้ารหัส

ตั้งค่าการแสดงผล

ฟอร์มตั้งค่าการแสดงผล คือ ฟอร์มที่ผู้ปฏิบัติงานใช้กำหนดว่าจะให้เครื่องแสดงแกนใดและในลำดับใด

- 🕨 เลื่อนไปที่การแสดงผลที่ต้องการและกด ENTER
- 🕨 กดปุ่ม **ทำงาน/ไม่ทำงาน** เพื่อเปิดหรือปิดการแสดงผล กดปุ่มลูกศรช้ายหรือขวา เพื่อเลือกชื่อแกน
- 🕨 เลื่อนไปที่ช่องอินพุต
- เสื่อนไปที่ช่อง แสดงความละเอียด กดปุ่ม แบบหยาบ หรือ แบบละเอียด เพื่อเลือกความละเอียดของการแสดงผล
- ไล้อนไปที่ช่อง แสดงมุม หากชนิดของตัวเข้ารหัสตั้งที่ แบบหมุน กดปุ่ม มุม เพื่อให้แสดงตำแหน่งเป็น 0? 360?, ? 180?, ? infinity, หรือ RPM

การควบรวม

โดปุ่มตัวเลขตามหมายเลขอินพุตตัวเข้ารหัสที่ด้านหลังของเครื่อง กดปุ่ม + หรือ -เพื่อควบรวมอินพุตที่สองกับอินพุตที่หนึ่ง หมายเลขอินพุตจะแสดงถัดจากชื่อแกนเพื่อแสดงให้ทราบว่าตำแหน่งนั้นเป็นตำแหน่งควบรวม (เช่น "2 + 3") ดู Abb. I.4:

การควบรวม Z (เฉพาะการใช้งานกลึง)

การใช้งานการกลึง VUE จะให้วิธีการที่รวดเร็วสำหรับการควบรวมตำแหน่งแกน Zo และ Z ในระบบ 3 แกน จอแสดงผลสามารถควบรวมการแสดงหน้าจอ Z หรือหน้าจอ Zoได้ ดู Abb. I.3:

D:0 | T:1 | F: 0.0 | 0:00 | นิ้ว | ABS | โคร | กำหนด 1.00000 REF 2.50000 REF 2.50000 REF 1.75000 REF 7ธีไข้ มม เรเดียน กำหนด คำศูนย์

การใช้การควบรวม Z

ในการควบรวมแกน Zo และ Z และไห้แสดงผลลัพธ์ในหน้าจอ Z o ให้กดปุ่ม Zoค้างไว้ประมาณ 2 วินาที ผลรวมของตำแหน่ง Z ทั้งสองจะแสดงในหน้าจอ Zo และหน้าจอ Z จะว่างเปล่า ดู Abb. I.4:

ในการควบรวมแกน Zo และ Z และให้แสดงผลลัพธ์ในหน้าจอ Z ให้กดปุ่ม Z ค้างไว้ประมาณ 2 วินาที ผลรวมของตำแหน่ง Z จะแสดงในหน้าจอ Z และหน้าจอ Zo จะว่างเปล่า การควบรวมจะได้รับการรักษาไว้ในเครื่องในระหว่างรอบกระแสไฟ

การย้ายอินพุต Zo หรือ Z จะอัปเดตตำแหน่งการควบรวม Z

เมื่อมีการควบรวมตำแหน่งแล้ว ระบบจะต้องมีจุดอ้างอิงสำหรับตัวเข้ารหัสทั้งสอง เพื่อให้สามารถเรียกคืนจุดอ้างก่อนหน้าได้

การยกเลิกการควบรวม Z

ในการยกเลิกการใช้การควบรวม Z ให้กดปุ่มแกนของหน้าจอที่ว่าง การแสดงผลของตำแหน่ง Zo และ Z แต่ละตำแหน่งจะถูกเรียกคืนกลับมาอีกครั้ง

Abb. I.4: การใช้การควบรวม Z

การชดเชยข้อผิดพลาด

ระยะที่เครื่องมือการตัดเคลื่อนที่ ซึ่งวัดโดยตัวเข้ารหัส สามารถแตกต่างจากระยะเคลื่อนที่จริงของเครื่องมือได้ในบางกรณี ข้อผิดพลาดนี้สามารถเกิดขึ้นได้

เนื่องจากข้อผิดพลาดของระยะพันของสกรูบอล หรือการเบี่ยงเบนและการเอียงของแกน

ข้อผิดพลาดนี้สามารถเกิดได้ไม่ว่าจะเป็นแบบเส้นตรง หรือแบบไม่ใช่เส้นตรง

คุณสามารถหาข้อผิดพลาดเหล่านี้ด้วยการใช้ระบบการวัดอ้างอิง เช่น บล็อกวัดค่า เลเซอร์ ฯลฯ

จากการวิเคราะห์ข้อผิดพลาด จะทำให้สามารถระบุรูปแบบการชดเชยที่ต้องการ ข้อผิดพลาดแบบเส้นตรง หรือแบบไม่ใช่เส้นตรง

VUE จะให้มีการชดเซยข้อผิดพลาดเหล่านี้ และแต่ละแกนสามารถตั้งโปรแกรมแยกจากกันด้วยการชดเซยที่เหมาะสม

呣

การชดเซยข้อผิดพลาดจะใช้ได้เมื่อใช้ตัวเข้ารหัสแบบเส้นตรงเท่านั้น

การชดเชยข้อผิดพลาดแบบเส้นตรง

การชดเชยข้อผิดพลาดแบบเส้นตรงสามารถใช้ได้

ถ้าผลของการเปรียบเทียบด้วยมาตรฐานอ้างอิงแสดงว่ามีการเบี่ยงเบนแบบเส้นตรงตลอดช่วงความยาวที่วัดทั้งหมด ในกรณีนี้ร้อผิดพลาดสามารถชดเซยโดยการคำนวณค่าแฟกเตอร์แก้ไขแบบเดี่ยว ดู Abb. I.5: และ Abb. I.6:

- เมื่อพบข้อผิดพลาดแล้ว เครื่องจะป้อนข้อมูลข้อผิดพลาดของตัวเข้ารหัสโดยตรง กดปุ่ม ชนิด เพื่อเลือกการขดเซยแบบเส้นตรง
- 🕨 ป้อนค่าแฟกเตอร์การชดเซยในหน่วยหนึ่งในล้านส่วน (ppm) และกดปุ่ม ENTER

ในการคำนวณการชดเซยข้อผิดพลาดแบบเส้นตรง ให้ใช้สูตรนี้:

- โดยที่ S = ความยาวที่วัดได้ด้วยมาตรฐาน
 - อ้างอิง M = ความยาวที่วัดได้ด้วยอุปกรณ์ที่แกน

ตัวอย่าง

หากความยาวของมาตรฐานที่คุณใช้คือ 500 มม. และความยาวที่วัดได้ตามแกน X คือ 499.95 แล้ว ค่า LEC ของแกน X คือ 100 ส่วนต่อล้าน (ppm)

$$EC = \left(\frac{500 - 499.95}{499.95} \right) \times 10^{6} \text{ ppm}$$

LEC = 100 ppm (ปัดเศษให้เป็นจำนวนเต็มที่ใกล้เคียงที่สุด)

Abb. I.5: การชดเชยข้อผิดพลาดแบบเส้นตรง, สูตรการคำนวณ

การชดเชยข้อผิดพลาดแบบไม่ใช่เส้นตรง

คุณควรใช้การชดเชยข้อผิดพลาดแบบไม่ใช่เส้นตรง

ถ้าผลของการเปรียบเทียบด้วยมาตรฐานอ้างอิงแสดงค่าเบี่ยงเบนที่มีการสลับหรือการแกว่งไปมา ค่าแก้ไขที่ต้องการจะถูกคำนวณและป้อนค่าในตาราง VUE สามารถรองรับได้ถึง 200 จุดต่อแกน ค่าผิดพลาดระหว่างค่าจุดแก้ไขสองค่าที่ป้อนไว้ซึ่งอยู่ติดกัน จะคำนวณด้วยการแก้ไขโดยการประมาณค่าแบบเส้นตรง

빤

การขดเซยข้อผิดพลาดแบบไม่ไข่เส้นตรงจะมีเฉพาะในสเกลที่มีเครื่องหมายอ้างอิงเท่านั้น ถ้าการขดเซยข้อผิดพลาดแบบไม่ใช่เส้นตรงถูกกำหนดไว้แล้ว จะไม่มีการใช้การขดเซยข้อผิดพลาดจนกระทั่งเครื่องหมายอ้างอิงถูกข้ามผ่าน

เริ่มตารางการชดเชยข้อผิดพลาดแบบไม่ใช่เส้นตรง:

- 🕨 เลือกแบบไม่ใช่เส้นตรง โดยการกดปุ่ม ชนิด
- ในการเริ่มตารางการชดเชยใหม่ ให้เริ่มจากการกดปุ่ม แก้ไขตาราง
- จุดแก้ไขทั้งหมด (ได้ถึง 200 จุด) จะมีระยะเว้นเท่าๆ กันจากจุดเริ่ม ป้อนค่าระยะระหว่างจุดแก้ไขแต่ละจุด กดปุ่มลูกศรลง
- ป้อนค่าจุดเริ่มของตาราง จุดเริ่มจะวัดจากจุดอ้างอิงของสเกล ถ้าคุณไม่ทราบระยะดังกล่าว คุณสามารถเคลื่อนที่ไปที่ตำแหน่งของจุดเริ่มและกด คำนวณตำแหน่ง no ENTER

D:O|T:1|F: 0.0| 0:00| ນີ້ວ| ABS | |

การชดเชยข้อผิดพลาด –อินพุต 1 0 PPM	ชดเชยข้อผิดพลาด สำหรับอินพุตนี้ ไม่ทำงาน
ี−อินพุต 2 ไม่ทำงาน −อินพุต 3 ไม่ทำงาน	กด ชนิด เพื่อเลือกชดเชย ข้อผิดพลาด แบบเส้นตรง หรือ ไม่ใช่แบบเส้นตรง
	 วิธีเช้

Abb. I.6: ฟอร์มการชดเชยข้อผิดพลาดแบบเส้นตรง

การตั้งค่าตารางการชดเชย

- กดปุ่ม แก้ไขตาราง เพื่อดูค่าในตาราง
- 🕨 ใช้ปุ่มลูกศร ขึ้น หรือ ลง หรือปุ่มตัวเลขเพื่อเลื่อนเคอร์เซอร์ไปยังจุดแก้ไขเพื่อเพิ่มหรือเปลี่ยนแปลง กด ENTER
- ป้อนค่าข้อผิดพลาดที่ทราบซึ่งมีอยู่ ณ จุดนี้ กด ENTER
- 🕨 เมื่อเสร็จสมบูรณ์ให้กด C เพื่อออกจากตารางและย้อนกลับไปที่ฟอร์ม การชดเซยข้อผิดพลาด

การอ่านกราฟ

คุณสามารถดูตารางการชดเซยข้อมิดพลาดในรูปแบบตาราง หรือแสดงด้วยภาพ กราฟแสดงแผนผังของข้อผิดพลาดการแปลค่าเทียบกับ ค่าที่วัดได้ กราฟจะมีสเกลที่ตายตัว ในขณะที่เคอร์เซอร์เสื่อนผ่านฟอร์ม ตำแหน่งของจุดบนกราฟจะแสดงด้วยเส้นแนวตั้ง

การดูตารางการชดเชย

- กดปุ่ม แก้ไขตาราง
- 🕨 ในการสลับระหว่างมุมมองแบบตารางและกราฟ ให้กดปุ่มดู
- 🕨 กดปุ่มลูกศร ขึ้น หรือ ลง หรือ ปุ่มตัวเลขเพื่อเลื่อนเคอร์เซอร์ภายในตาราง

ข้อมูลตารางการชดเชยข้อผิดพลาดอาจจะถูกบันทึกไปที่ หรือโหลดจากเครื่องคอมพิวเตอร์ผ่านพอร์ต USB

การส่งออกตารางการชดเชย ณ ขณะนี้

- กดปุ่ม แก้ไขตาราง
- 🕨 กดปุ่ม นำเข้า/ส่งออก
- 🕨 กดปุ่ม ส่งออกตาราง

การนำเข้าตารางการชดเชยใหม่

- กดปุ่ม แก้ไขตาราง
- 🕨 กดปุ่ม นำเข้า/ส่งออก
- กดปุ่ม นำเข้าตาราง

การขดเชยระยะ Backlash

เมื่อใช้ตัวเข้ารหัสแบบหมุนด้วยสกรูเกลียวนำ

การเปลี่ยนพิศของตารางอาจเป็นเหตุให้เกิดข้อผิดพลาดในตำแหน่งที่แสดง เนื่องจากช่องว่างภายในส่วนประกอบสกรูเกลียวนำ ช่องว่างที่อ้างถึงนี้ คือระยะ Backlash ข้อผิดพลาดนี้สามารถขดเชยโดยการป้อนค่าระยะ Backlash ภายในสกรูเกลียวนำลงในคุณสมบัติการชดเชยระยะ Backlash ดู Abb. 1.7:

ถ้าตัวเข้ารหัสแบบหมุนอยู่นอกเหนือจากตาราง (ค่าที่แสดงมากกว่าค่าตำแหน่งจริงของตาราง) จะเรียกว่าระยะการสึกทางบวกและค่าที่ป้อนควรจะเป็นค่าทางบวกของจำนวนของข้อผิดพลาด

ไม่มีการชดเชยระยะ Backlash จะมีค่าเป็น 0.000

D:0| T:1 |F: 0.0| 0:00| ນີ້ວ| ABS | |

Abb. I.7: ฟอร์มการชดเชยระยะ Backlash

การตั้งค่าการนับ

คุณสมบัติการตั้งค่าตัวนับเป็นพารามิเตอร์ซึ่งผู้ปฏิบัติงานกำหนดการใช้งานของผู้ใช้ไว้สำหรับการอ่านค่าที่ได้ ตัวเลือกต่างๆ ใช้สำหรับการใช้ในงานกัดหรืองานกลึง ดู Abb. 1.8:

ปุ่ม ค่าเริ่มต้นจากโรงงาน ปรากฏในตัวเลือก การตั้งค่าตัวนับ เมื่อกด พารามิเตอร์การตั้งค่า เพื่อ้างถึงไม่ว่าจะเป็นงานกัด หรืองานกลึง! จะถูกตั้งค่าใหม่เป็นค่าเริ่มต้นจากโรงงาน ผู้ปฏิบัติงานจะถูกเตือนให้กด ใช่ เพื่อกำหนดพารามิเตอร์ไปเป็นค่าเริ่มต้นจากโรงงาน หรือไม่เพื่อยกเลิกและข้อนกลับไปที่หน้าจอของเมนูก่อนหน้า

ช่อง จำนวนแกน จะกำหนดจำนวนแกนที่ต้องการ ปุ่ม 1, 2 หรือ 3 จะปรากฏเพื่อให้เลือกระหว่าง 1, 2 หรือ 3 แกน

คุณสมบัติ เรียกคืนตำแหน่ง เมื่อตั้งค่าที่ "เปิด" เครื่องจะเก็บค่าตำแหน่งสุดท้ายของแต่ละแกนเมื่อปิดเครื่อง และจะแสดงค่าตำแหน่งนั้นอีกครั้งเมื่อเปิดเครื่อง

โปรดทราบว่า ค่าการขยับเครื่องใดๆ จะสู-หายระหว่างที่ไฟดับ เมื่อไฟฟ้าดับ แนะนำให้ตั้งค่าจุดอ้างของขึ้นงานใหม่โดยการใช้ขั้นตอน การประเมินผลเครื่องหมายอ้างอิง

Abb. I.8: ฟอร์มการตั้งค่าการนับ

วิเคราะห์

เมนู วิเคราะห์ จะช่วยให้เข้าใช้งานสำหรับทดสอบแผงปุ่มและตัวค้นหาขอบ ดู Abb. I.9:

ทดสอบแผงปุ่ม

ภาพจำลองของแผงปุ่มจะมีตัวบ่งชี้ เมื่อมีการกดและปล่อยสวิตช์

- กดปุ่มบนตัวเครื่องและปุ่มเลือกแต่ละปุ่มเพื่อทดสอบ จุดจะปรากฏขึ้นบนแต่ละปุ่มเมื่อถูกกด ซึ่งแสดงว่าใช้งานได้ตามปกติ
- 🕨 กดปุ่ม C สองครั้งเพื่อออกจากการทดสอบแผงปุ่ม

ทดสอบการแสดงผล

🕨 เพื่อทดสอบการแสดงผล กดปุ่ม Enter เพื่อกำหนดการแสดงผลให้เป็น ดำทึบ, ขาวทึบและกลับเป็นปกติ

Abb. I.9: ฟอร์มการวิเคราะห์

การติดตั้งและการเชื่อมต่อไฟฟ้า || - 2

การติดตั้ง

DRO ติดตั้งบนชุดอุปกรณ์เอียง/หมุน:

ข้อกำหนดทางไฟฟ้า

ระดับการป้องกัน (EN 60529)

แรงดันไฟฟ้า	100 - 240 โวลต์กระแสสลับ
กำลังไฟฟ้า	สูงสุด 25 โวลต์แอมป์
ความถึ่	50/60 เฮิรตซ์ (+/- 3 เฮิรตซ์)

IP 40 ที่แผงด้านหลัง

IP 54 ที่แผงด้านหน้า

ฟิวส์ 500 มิลลิแอมป์/250 โวลต์กระแสสลับ, 5 มม. x 20 มม., Slo-Blo (ฟิวส์ที่สายมีไฟ และสายไม่มีไฟ)

สภาวะแวดล้อม

อุณหภูมิในการทำงาน	0? ถึง 45?C (32? ถึง 113?F)
อุณหภูมิในการจัดเก็บ	-20? ถึง 70?C (-4? ถึง 158?F)

น้ำหนักเครื่อง

2.6 กก. (5.2 ปอนด์)

สายดินสำหรับป้องกัน (การต่อสายดิน)

คุณจำเป็นต้องเชื่อมต่อขั้วสายดินสำหรับป้องกันบนแผงด้านหลังเข้ากับจุดร่วมของสายดินเครื่อง (ଜୁ Abb. l.10:)

การดูแลรักษาเชิงป้องกัน

ตัวเครื่องไม่จำเป็นต้องมีการดูแลรักษาเชิงป้องกันเป็นพิเศษ สำหรับการทำความสะอาด ให้เช็ดเบาๆ ด้วยผ้าแห้งที่ไม่มีขุย

ขั้วสายดินสำหรับป้องกัน (การต่อสายดิน) ที่ด้านหลังของเครื่อง Abb. I.10:

ll – 3 ขนาด

มุมมองด้านบนพร้อมขนาด

มุมมองด้านหน้าพร้อมขนาด

มุมมองด้านหลัง

หมายเลข ID อุปกรณ์เสริม

หมายเลข ID	อุปกรณ์เสริม
627052-01	Pkgd, ฐานยึด

ชุดติดตั้ง DRO พร้อมแกน (ข้อมูลอ้างอิง)

ฐานยึดของ DRO

มีสถาษณะเป็นร่องที่ป้องกันไม่ให้น็อตล็อกหมุนได้ ให้ใส่สลักยึดเข้าไปก่อน โดยสอดเข้าไปในฐาน แล้วยึดเครื่อง DRO ให้เข้าที่ด้วยการขันด้ามจับให้แน่น

การติดตั้ง DRO กับฐานยึด

II – 3 ขนาด

34

Symbols ขนาด 32 ข้อกำหนดทางไฟฟ้า 31 ข้อกำหนดสภาวะแวดล้อม 31 งานกัดเอียงและงานกัดโค้ง 15 จัดเตรียมตัวเข้ารหัส 25 ตั้งค่าการแสดงผล 26 น้ำเข้า/ส่งออก (การตั้งค่า) 6 นาฬิกาจับเวลาทำงาน 5 พื้นที่แสดง 1 พารามิเตอร์จัดเตรียมงาน 4 พารามิเตอร์จัดเตรียมการติดตั้ง 25 ฟังก์ชันการใช้/เลิกใช้ด้างคิง 4 ฟังก์ชันค่าต้น 10 การดูแลรักษาเชิงป้องกัน 31 การตั้งค่าจุดอ้าง (งานกลึง) 22 การตั้งค่าตัวนับ 27, 30 การตั้งค่าเครื่องมือ, งานกลึง 20 การกำหนดทิศทาง 24 การประเมินผลเครื่องหมายอ้างอิง 3 การปรับค่าคอนโซล 5 การควบรวม 7 26 การชดเชยข้อผิดพลาด 27 การชดเชยข้อผิดพลาดแบบไม่ใช่เส้นตรง 28 การขดเขยข้อผิดพลาดแบบเส้นตรง 28 การขดเชยระยะการสึก 29 การเตือนใกล้ค่าศูนย์ 5 ปุ่ม ขอบ 9 ปุ่ม จุดอ้าง (งานกัด) 8 ปุ่ม น้ำเข้า/ส่งออก 6 ปุ่ม กำหนด/ค่าศูนย์ 6 ปุ่ม กำหนดค่าศูนย์ 6 ปุ่ม 1/2 13 ปุ่ม 1/2 บนตัวเครื่อง 13 ปุ่ม แนวเส้นศูนย์กลาง 9 ปม เครื่องมือ 7 ปุ่ม เครื่องมือ บนตัวเครื่อง 7, 20 ปุ่ม ไม่มีอ้างอิง 3 ปุ่ม ใช้อ้างอิง 3 ปุ่ม ภาษา 6 ปุ่ม ศูนย์กลางวงกลม 9 ปุ่มจัดเตรียมการติดตั้ง 25 ปุ่มจุดอ้าง (งานกลิ้ง) 22 ปุ่มค่าจริง/ระยะที่ต้องเคลื่อนที่ 3

ปุ่มค่าต้น (งานกลึง) 24 ป่มเครื่องมือ (งานกลึง) 20 ปุ่มใช้อ้างอิง/เลิกใช้อ้างอิง 4 ปุ่มเลิกใช้อ้างอิง 4 ปุ่มอัตราส่วน 23 ค่าต้น 10 ค่าต้นระยะส่วนเพิ่ม 12 ค่าต้นระยะสัมบูรณ์ 10 А แถบสถานะ 1 แถบสถานะ (การตั้งค่า) 5 ชื่อของปุ่ม 1 ชื่อแกน 1 แกนเส้นผ่าศูนย์กลาง (งานกัด) 5 โครงร่างของหน้าจอ 1 เครื่องคำนวณความเรียว 23 เครื่องหมายอ้างอิง 1 ข้าม 3 ไม่ข้าม 3 เรียกคืนตำแหน่ง 30 แสดงรัศมี/เส้นผ่าศูนย์กลาง 23, 24 โหมดการใช้งาน 3 รายละเอียดฟังก์ชันการใช้งานทั่วไปของปุ่ม 6 รายละเอียดการใช้งานเฉพาะงานกัดและฟังก์ชันปุ่ม 7 มิเรคร์ 4 ภาษา (การตั้งค่า) 6 รูปแบบ (งานกัด) 13 รูปแบบเส้นตรง 15, 16, 18 รูปแบบวงกลมและเส้นตรง 13 С วิเคราะห์ 30 Е หน่วยของการวัด. การตั้งค่า 4 สเกลแฟกเตคร์ 4 ส่วนเพิ่ม 3 สัมบูรณ์ 3 สายดิน 31

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

www.heidenhain.de

HEIDENHAIN CORPORATION

333 East State Parkway **Schaumburg, IL 60173-5337 USA** [™] +1 (847) 490-1191 [™] +1 (847) 490-3931 E-Mail: info@heidenhain.com

www.heidenhain.com

