

www.anilam.com

Integral Programmable
Intelligence

User’s Guide

Integral Programmable Intelligence User’s Guide
P/N 70000416D – Warranty

All rights reserved. Subject to change without notice. iii
31-October-04

Warranty

ANILAM warrants its products to be free from defects in material and workmanship for one (1)
year from date of installation. At our option, we will repair or replace any defective product upon
prepaid return to our factory.

This warranty applies to all products when used in a normal industrial environment. Any
unauthorized tampering, misuse, or neglect will make this warranty null and void.

Under no circumstances will ANILAM, any affiliate, or related company assume any liability for
loss of use or for any direct or consequential damages.

The foregoing warranties are in lieu of all other warranties expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The information in this manual has been thoroughly reviewed and is believed to be accurate.
ANILAM reserves the right to make changes to improve reliability, function, or design without
notice. ANILAM assumes no liability arising out of the application or use of the product
described herein.

Copyright 2004 ACU-RITE COMPANIES, Inc.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Contents

All rights reserved. Subject to change without notice. v
31-October-04

Section 1 - Introduction

Section 2 - Software
CAN I/O Board ... 2-1

Inputs.. 2-2
Outputs... 2-3

The IPI Operation Cycle ... 2-4
Memory Registers .. 2-4
Multifunction Registers... 2-5

M2-PRBFLAG... 2-8
M41-SPDAN0V... 2-8
M42-MREGRAN... 2-9
M43-SPDGRCH ... 2-10
M44-CNCERR.. 2-10
M46-KEYMASK.. 2-10
M47-SPIN100... 2-11
M48-SPDRPM.. 2-11
M49-SPDDIR.. 2-11
M50-HOMING... 2-11
M51-LNFDLIM.. 2-11
M52-ROFDLIM ... 2-12
M53-SPDVOLT... 2-12
M54-CMDRPM ... 2-12
M55-HWSTOP.. 2-12
M56-AUTOINH ... 2-12
M57-FEED100.. 2-12
M58-XSTART ... 2-12

P Registers... 2-13
General-Purpose, Multifunction Registers.. 2-14

Shared Registers.. 2-14
Static M-registers - M240–M255... 2-15
Timer Registers .. 2-15
Sequence Registers ... 2-15

I/O Boards .. 2-16
IPI Monitor.. 2-17
Viewing the IPI Monitor .. 2-17

Section 3 - Working with IPI
Configuring IPI Setup ... 3-1

Programming the IPI... 3-2
File Names ... 3-2

Accessing Select Options Menu... 3-3
Using the IPI Editor... 3-3
Creating a New Program .. 3-3
Selecting an Existing Program.. 3-5
Activating the Editor.. 3-6
Loading and Compiling a Program ... 3-6

Optimizing the Development Cycle .. 3-7
IPI File Management Soft Keys.. 3-7

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D – Contents

vi All rights reserved. Subject to change without notice.
 31-October-04

Section 4 - Writing IPI Programs
How the Interpreter Uses Instructions .. 4-1
Program START and END Instructions.. 4-2
Building IPI Program Instructions ... 4-3

Instruction Operands .. 4-3
Operation Codes .. 4-3
Expressions.. 4-3
Numeric Parameters... 4-5

Creating Additional I/O Labels.. 4-6
Using Comments.. 4-6
Finish Signal Generation .. 4-7
IPI Operation Set.. 4-8

Section 5 - Timers
Timer Off (TOFF) Command .. 5-4
Timer Delayed On Then Off (T) Command .. 5-5
Timer On (TON) Command.. 5-5

Section 6 - Advanced IPI Instructions
IF/ELS/EDF Instructions... 6-1
Conditional Jumps.. 6-4

Section 7 - Programming Tips and Examples
Compiler Directives .. 7-1

DEFINE .. 7-1
LIST.. 7-1
MAXSIZE.. 7-1
MAXSTEPS.. 7-1
RANGE... 7-2
SYNTAX ... 7-2

Plan the Program ... 7-2
Using Labels .. 7-3
Using Conditional Execution .. 7-3
Using Sequence States.. 7-3
Programming Examples ... 7-4

Program 1 – Basic IPI Example.. 7-4
Program 2 – Binary Encoder Example ... 7-8
Program 3 – Binary Decoder Example ... 7-10
Program 4 – Single-Shot Pulse/Simple Counters Example .. 7-12
Program 5 – IPI Example ... 7-13

Index ... Index-1

Integral Programmable Intelligence User’s Guide
P/N 70000416D – Introduction

All rights reserved. Subject to change without notice. 1-1
31-October-04

Section 1 - Introduction
Traditionally, inputs and outputs between the CNC and the machine
required numerous relays to switch signals between the CNC and the
hardware. The relay logic was hardwired and depicted with ladder
diagrams. These relays consumed power, were subject to failure, and
required hardware reconfiguration to change.

More recently, the programmable controller, an add-on device, replaced
relays with solid-state circuitry. The programmable controller design
solved the problems associated with relays. It generated a faster
response and was programmable and more flexible. However, it was still
a physical add-on; it required cabinet space and drew power.

Therefore, Integral Programmable Intelligence (IPI), a software package
that runs in the background of the CNC, was developed and added to the
CNC. IPI monitors inputs, from the control panel and machine switches,
through the standard CAN Bus I/O system. When conditions are correct,
the IPI directs the I/O system to generate the appropriate output, hence
the term “conditional logic.”

Because IPI is integral to the CNC, it requires no additional hardware
space or power. IPI is compatible with the CNC’s existing CAN Bus I/O
Board.

Most inputs and outputs to IPI are digital and can be thought of as
true/false, active/inactive, on/off. The program loaded at machine setup
determines the combination or sequence of events required to generate
an output.

The IPI instruction set enables implementation of basic Boolean
functions, timed functions, sequenced functions, and conditional
expressions. This results in a high degree of versatility.

Later machine modifications require changes only to the program. The
program is written with the same text Editor that is used to write G-code
part programs for the CNC. Ladder diagrams are easily translated into
IPI code.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Software

All rights reserved. Subject to change without notice. 2-1
31-October-04

Section 2 - Software
The CNC software provides a simple environment for the development of
IPI programs. The environment allows IPI program developers to:
 Create a program
 Select a specific IPI program
 Edit the program
 Compile and load the program
 Manage IPI programs.

IPI programs are standard text files that you can develop with any text
editor. The IPI environment provides you with program management
utilities, which include tools such as program copying, printing, deleting,
and restoring. Refer to “Section 3 - Working with IPI” for more details.

CAN I/O Board
The standard OEM product contains two CAN I/O Boards configured as
source or sink. The system supports a maximum of four additional
boards (six boards total). The machine builder assigns a unique number
to each CAN Node (0–5).

NOTE: 3300M/MK systems support a maximum of two I/O boards.

Each I/O Board is a node that accepts inputs and generates outputs as
required. You can configure each node as either all Digital or
Digital/Analog. When configured for Digital, the I/O board has 10 digital
inputs and six digital outputs. When configured for Digital/Analog, the I/O
board has one analog input, ten digital inputs, and five digital outputs.

The machine builder hardwires the required inputs and outputs to the P5
(DB 25-pin) connector on each board as shown in Table 2-1.

Table 2-1, P5 Inputs and Outputs
Pin Signal Names Pin Signal Names

1 INPUT 0 14 OUTPUT 0
2 INPUT 1 15 OUTPUT 1
3 INPUT 2 16 OUTPUT 2
4 INPUT 3 17 OUTPUT 3
5 INPUT 4 18 OUTPUT 4
6 INPUT 5 19 OUTPUT 5
7 INPUT 6 20 ANALOG IN
8 INPUT 7 21 NC
9 INPUT 8 22 NC
10 INPUT 9 23 24 COMMON
11 24 V COMMON 24 +24 V
12 +24 V 25 NC
13 NC

For more information on CAN I/O Boards, refer to the OEM CNC
Installation, P/N 70000506.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Software

2-2 All rights reserved. Subject to change without notice.
 31-October-04

Inputs

Format Xn:b where:
 X indicates Input
 n indicates Node # (range: 0 to 5)
 b indicates Bit # (range: 0 to 9)

You can identify inputs by the physical location of the input to the CAN I/O
Board. See Table 2-2. The IPI stores the condition or state of each input
(on/off, true/false) in a state memory register using the same designation.

Table 2-2, Input Locations
Input Location

Vector Limits
and Home Limits

Always located on CAN Node 0, if used. The
CNC reads these inputs from travel-limit
switches.

General Purpose
Inputs

Located on indicated CAN Node (0 to 5).

Inputs must be hardwired to the P5 DB-25 connector of the appropriate
CAN Node (board). Refer to Table 2-3 for the required inputs and
outputs to the P5 (DB 25-pin) connector on each board.

Table 2-3, Input Type Descriptions
Input Type Location

X0:0–X0:7 Vector Limits (if used; otherwise,
General Purpose Inputs)

CAN Node 0

X0:8–X0:9 General Purpose Inputs CAN Node 0
X1:0–X1:9 General Purpose Inputs CAN Node 1
X2:0–X2:9 General Purpose Inputs CAN Node 2
X3:0–X3:9 General Purpose Inputs CAN Node 3
X4:0–X4:9 General Purpose Inputs CAN Node 4
X5:0–X5:9 General Purpose Inputs CAN Node 5

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Software

All rights reserved. Subject to change without notice. 2-3
31-October-04

Outputs

Format Yn:b where:
 Y indicates Output
 n indicates Node #; range of n = 0 to 5
 b indicates Bit #; range of b = 0 to 5

An output is an electrical signal generated by the board. You can identify
an output by the physical location of the output to the CAN I/O Board.
The IPI stores the condition or state of each output in output memory
registers identified by the Y designator of the same name. The IPI uses
the output states to generate electrical signals once every IPI
computation cycle. See Table 2-4.

Table 2-4, Output Type Descriptions

NOTE: Outputs must be hardwired to the P5 DB-25
connector of the appropriate CAN Node (board).
Refer to Table 2-1, P5 Inputs and Outputs.

Output Type Location
Y0:0–Y0:5 General Purpose Outputs CAN Node 0
Y1:0–Y1:5 General Purpose Outputs CAN Node 1
Y2:0–Y2:5 General Purpose Outputs CAN Node 2
Y3:0–Y3:5 General Purpose Outputs CAN Node 3
Y4:0–Y4:5 General Purpose Outputs CAN Node 4
Y5:0–Y5:5 General Purpose Outputs CAN Node 5

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Software

2-4 All rights reserved. Subject to change without notice.
 31-October-04

The IPI Operation Cycle

The following, is a description of the IPI operation cycle:

1. Upon activation, IPI clears all memory registers and resets all internal
timers.

2. The IPI executes any initialization instructions that appear before the
program START.

3. At START, the IPI samples all inputs and saves the states in the
memory registers. During the current cycle, the interpreter assesses
the values stored in the input registers. This prevents interruption of a
cycle in progress by a sudden change.

4. As the interpreter runs, it determines the states of the outputs and
stores these states in the output memory registers.

5. At program END, the interpreter finishes. The IPI instructs the I/O
system to generate outputs, as indicated by the states stored in the
output registers.

6. The IPI cycles back to START. All old data remain in memory, unless
updated from input state changes that occurred since the last
sampling cycle.

Memory Registers

IPI uses two kinds of memory registers: Boolean registers, which store
only true/false states, and numeric registers, which hold integer values.
The numeric registers allow IPI to perform timing, counting, and
comparison operations.

Inputs and outputs are IPI elements that use similarly designated
registers. Additional types of memory registers include:
 Multifunctional Registers
 Timers
 Sequence Registers

Refer to Table 2-5.
 Numeric values greater than 0 (zero) become TRUE in a state-only

register.
 A numeric value of 0 (zero) becomes FALSE in a state-only register.
 A state value of TRUE becomes a 1 in a numeric register.
 A state value of FALSE becomes a 0 (zero) in a numeric register.

Table 2-5, Register Capabilities
Register Type Numeric Values State Values

Inputs – X Identifiers X
Outputs – Y Identifiers X
Sequence Outputs – S Identifiers X
Multifunction Registers – M Identifiers X X
Timer Registers – T Identifiers X X

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Software

All rights reserved. Subject to change without notice. 2-5
31-October-04

Multifunction Registers

IMPORTANT: Multifunction registers M0–M63 have reserved
specialized functions. The IPI programmer has access to
multifunction registers M64–M255 for general-purpose
use.

Format Mn, n is a number 0 to 255.

Multifunction memory registers are general-purpose registers that have
several uses. The IPI assigns M numbers to multifunction registers.
There are 256 multifunction registers available, numbered M0–M255.
Multifunction registers M0–M63 are reserved. Multifunction registers
M64–M255 are available for the intermediate storage of a value or state.
You can use the value stored in a multifunction register in an instruction
like any other parameter. Most reserved multifunction registers also have
a permanently assigned label. Multifunction registers have no permanent
board address. To output the value stored in a multifunction register, the
IPI must send the value to an IPI output.

Multifunction registers can store Boolean true/false states or numeric
values.

M0–M32 are generated by the CNC and can be considered CNC inputs
to the IPI. The IPI uses these registers to generate readings on the
display. The information stored in these registers is available on a Read
Only basis. Refer to Table 2-6.

Table 2-6, Assigned Read Only Multifunction Registers
M Designator Assigned Label Purpose

M0 SPINDLE True when not probing and spindle may run.
M1 POSN True when CNC is in position.
M2 PRBFLAG Probing flag is active during G31 primitive moves

and probing cycles.
M3 PWRFAIL True if +24V is on.
M4 FEED Feed mode flag.
M5 SVOFF True if servo is off.
M6 ESTOP True if E-Stop is out.
M7 NOT USED
M8 CARRY Carry Flag/Register.
M9 TRUE Always ON.
M10 FALSE Always OFF.
M11 NOT USED
M12 TCFINACK Tool changer finished received.
M13 HOME True when Z or XYZ at home.
M14 SPLOOP True when spindle in closed-loop mode.
M15 RUN True when CNC in RUN mode.

(Continued…)

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Software

2-6 All rights reserved. Subject to change without notice.
 31-October-04

Table 2-6, Assigned Read Only Multifunction Registers (Continued)
M Designator Assigned Label Purpose

M16 MAN True when CNC in MANUAL mode.
M17 MFLAG True when new M code is received.
M18 MCODE M code number.
M19 SFLAG True when new spindle code is received.
M20 SCODE Spindle number.
M21 TFLAG True when new tool number is received.
M22 TCODE Tool number.
M23 HFLAG True when new H-code number is received (tool

pre-set code).
M24 HCODE H-code number.
M25 --- Reserved.
M26 TMACEND Tool Macro end flag.
M27 ZMACHPOS Current Z-axis machine position in microns.
M28 ZEROSPD This flag allows the system to know when the

spindle RPM is “At-Zero.” Flag is True when using
spindle feedback and RPM ≤ Spindle zero speed
RPM tolerance (specified in Spindle Setup);
otherwise, False.

M29 ATSPD This flag allows the system to know when the
spindle RPM is “At-Speed.” Flag is True if
commanded RPM > 0 and percent of actual vs
commanded RPM is > Spindle at speed percent
(specified in Spindle Setup); otherwise, flag is False.

M30 – M31 --- Reserved.
M32 XMIT True when IPI accepts CNC data.

The IPI generates and the CNC internally monitors M33 – M63. You can
consider these registers inputs from the IPI to the CNC. This allows the
IPI program to output to the CNC and generate on-screen messages.
These messages are read and write registers. Refer to Table 2-7.

Table 2-7, Assigned Read/Write Multifunction Registers
Register Assigned Label Purpose

M33 FINISH Set True to signal M, S, T, or H Finish. When M or
S function is cleared, reset to false.

M34 SVOFLT Set True to signal a servo fault.
M35 FHOLD Set True to inhibit feed moves. Rapid moves will

execute normally.
M36 TCHGFIN Tool changer finished bit.
M37 XSTOP Set True to hold CNC motion. Set to False to

resume motion.
M38 XHOLD Set True to stop CNC motion. Press the Start

button to resume motion.
(Continued…)

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Software

All rights reserved. Subject to change without notice. 2-7
31-October-04

Table 2-7, Assigned Read/Write Multifunction Registers (Continued)
Register Assigned Label Purpose

M39 MSG Set any non-zero number to display message.
M40 --- Reserved.
M41 SPDAN0V When SPDAN0V M41 is True (non-zero) the IPI

disables the analog output to the spindle. When
M41 is False (zero), the IPI does not affect the
analog output to the spindle.

M42 MREGRAN Used to cycle the multifunction registers displayed
on the IPI monitor. Allows you to view M0–M256 by
selecting a range of registers to be displayed.

M43 SPDGRCH When M43 is in the range of 40–44, the CNC will
enable the corresponding gear range. The gear
range specified is used only for calculating a
proportional spindle analog output voltage. When
M43 is outside of the range 40–44, the CNC ignores
this register.

M44 CNCERR Used by the CNC to pass error conditions to the IPI.
M45 NOT USED
M46 KEYMASK Used by the IPI program to mask out certain keys

from the operator.
M47 SPIN100 When any non-zero number is written to this

register, spindle analog voltage will be forced to
100% of the programmed value, regardless of the
setting of the spindle percentage switch on the
Manual Panel.

M48 SPDRPM Used to set the spindle analog to a desired speed
by placing the RPM value in the register.
NOTE: Handle all gear change selections

separately, using either the CNC program
or the M43 SPDGRCH.

M49 SPDDIR Used in conjunction with M48 to allow the IPI
program to control the spindle.

M50 HOMING Used to indicate when homing is in progress. The
register will be set to 1 when homing is active;
otherwise, it is set to 0.

M51 LNFDLIM Linear Axis feed limit. If this register is nonzero, use
the value as speed for linear axes.

M52 ROFDLIM Rotary Axis feed limit. If this register is nonzero,
use the value as speed for rotary axes.

M53 SPDVOLT Spindle voltage. Outputs a value in 0.01-V
increments; for example, if register value is 50,
output would equal 0.5 V.

M54 CMDRPM Commanded Spindle RPM. This is the S word
multiplied by any spindle override.

M55 HWSTOP Set register true to inhibit handwheel operation in all
modes. Set to zero to allow moves.

M56 AUTOINH Set to 1 to inhibit AUTO or S.Step mode. Set to 0 to
enable AUTO or S.Step mode.

(Continued…)

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Software

2-8 All rights reserved. Subject to change without notice.
 31-October-04

Table 2-7, Assigned Read/Write Multifunction Registers (Continued)
Register Assigned Label Purpose

M57 FEED100 Set to 1 to force feedrate override to 100%. Set to
zero to enable feedrate switch value.

M58 XSTART External start. Operation is identical to input
function and front panel key.

M59 TOOLNUM Active tool number.
M60 TLOBIN0 Used in random tool changer applications to store

the bin of the tool in the spindle.
M61 M19FLAG Status of M19 operation:

0 Once spindle function M3, M4, or M5
 is executed
1 During orientation
2 Once orientated

M62 M19END Allows IPI to terminate an M19 (spindle orientation)
sequence.

M63 SPRSTOP Bitmask axis Super STOP. Stops all machine
motion when set to non-zero on given axis. Motion
continues when register is set to ZERO. Axis
specified via bitmask (X=1, Y=2, Z=4, U=8, etc.)

M2-PRBFLAG

Read only register M2 is the probing flag and is active during G31
primitive moves and probing cycles. Bit 1 of PRBFLAG (M2) will be set
during the G31 primitive. At the beginning of the probing cycles, Bit 2 of
M2 will also be set, and reset at the end of those cycles. Thus, the IPI
program can be structured dependant on probe status and requirements.
The IPI programmer will use this register to logically decide what
functions need to be active during probing, as opposed to normal
machine operation. Examples of such functions are Feed Hold and axes
Feed Rate Limits. Often, such limitations are put on the machine's
operation when a guard is opened, or the spindle is not running. When
probing and using the G31 primitive, use of the M2 probing flag allows
these limitations to be properly enforced.

M41-SPDAN0V

When M41-SPDAN0V is True (non-zero), IPI will disable the analog
output to the spindle. When M41 is False (zero), the analog output to the
spindle is not affected.

For example, if the spindle is running at 1000 RPM and M41 is set to true,
the corresponding voltage output to the spindle will be 0V. Once M41 is
set to false (zero), the corresponding output to the spindle will be the
same as it was before the M41 was set to True. If you use an S-word
before setting M41 to False, the analog output will correspond to the
newly programmed RPM.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Software

All rights reserved. Subject to change without notice. 2-9
31-October-04

M42-MREGRAN

M42-MREGRAN is a bitmask that allows you to cycle through the range
of multifunction registers displayed on the IPI monitor. Currently, only
M48–M63 are displayed on the IPI monitor. M42 allows you to change
the range of displayed registers. You can display only 16 registers at one
time. Table 2-8 lists the available ranges.

Table 2-8, Available Multifunction Register Ranges Displayed on the IPI Monitor
Range No. Mreg Range Bitmask (Hex) Bitmask (Binary)
1 M0–M15 0001h 0000000000000001
2 M16–M31 0002h 0000000000000010
3 M32–M47 0004h 0000000000000100
4 M48–M63 0008h 0000000000001000
5 M64–M79 0010h 0000000000010000
6 M80–M95 0020h 0000000000100000
7 M96–M111 0040h 0000000001000000
8 M112–M127 0080h 0000000010000000
9 M128–M143 0100h 0000000100000000
10 M144–M159 0200h 0000001000000000
11 M160–M175 0400h 0000010000000000
12 M176–M191 0800h 0000100000000000
13 M192–M207 1000h 0001000000000000
14 M208–M223 2000h 0010000000000000
15 M224–M239 4000h 0100000000000000
16 M240–M255 8000h 1000000000000000

Displaying Multiple Ranges

To display multiple ranges simultaneously, combine the necessary
hexadecimal-bitmask values. When more than one range is displayed,
the IPI monitor screen flips between ranges every five seconds.

For example, to display ranges 1 and 2, combine the bitmask values for
Range 1 (0001h) and Range 2 (0002h) to get 0x0003 (MOV 00003H
MREGRAN).

The default value is 10H, which displays Range 5 (M64–M79). To display
all ranges, set M42 to FFFFh (MOV FFFFH MREGRAN).

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Software

2-10 All rights reserved. Subject to change without notice.
 31-October-04

M43-SPDGRCH

Set M43-SPDGRCH between 40–44 to enable the corresponding gear
range. The specified range is used to calculate a proportional spindle
analog output voltage only. When M43 is outside the range 40–44, the
CNC ignores this register.

When M43 is not 0 (zero), the monitor screen displays 1 on the last bit of
the PLC flags section. To see the actual value, using M42-MREGRAN to
display the proper M-register range (Range 3, 0004h).

M44-CNCERR

The CNC uses M44-CNCERR to pass error conditions to IPI. The CNC
can pass only one error (Set 1–4) at a time to IPI. To enable the CNC to
pass another error, the IPI program must clear M44 (set to zero). Refer
to Table 2-9.

Table 2-9, Error Condition Values
Condition Value

File Read Error 1
File Write Error 2
Checksum Error 3
New File 4

M46-KEYMASK

The IPI program uses M46-KEYMASK to mask out certain keys from the
operator. M46 contains a bit value; each bit corresponds to a key. Refer
to Table 2-10 for keys assigned to M46 bits.

Table 2-10, KEYMASK M46 Bit Numbers and Keys
Bit No. CNC Key Bitmask (Hex) Bitmask (Binary)

1 Start 0001h 0000000000000001
2 Hold 0002h 0000000000000010
3 Spindle CW 0004h 0000000000000100
4 Spindle CCW 0008h 0000000000001000
5 Spindle OFF 0010h 0000000000010000
6 All Keyboard Input 0020h 0000000000100000

Combine the appropriate bitmask hex values to mask out multiple keys at
once. For example, to mask out the Spindle CW, Spindle CCW, and
Spindle OFF, combine 0004h (Spindle CW), 0x0008 (Spindle CCW), and
0x0010 (Spindle OFF) to get 1C. The MOV 11100b M46 command
converts the value to binary format and uses the appropriate base
indicator. The command will mask out the specified spindle keys.

To enable the spindle keys to be used later in the program, clear M46 in a
subsequent execution scan; for example, MOV 0 M46.

The command enables all previously masked keys.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Software

All rights reserved. Subject to change without notice. 2-11
31-October-04

M47-SPIN100

When any nonzero number is written to this register, spindle analog
voltage will be forced to 100% of the programmed value, regardless of the
setting of the % Spindle Override switch on the Manual panel.

M48-SPDRPM

Set the spindle analog to a desired speed by placing the RPM value in
the register.

You must use any gear range selection separately, either by the CNC
program, or by using M43-SPDGRCH. Additionally, the desired RPM
must be in the range of allowed speeds, as specified in the Spindle Axis
Setup utilities.

When a valid spindle RPM is written to this register, spindle rotation will
begin. Default direction will be forward (M03). To stop rotation, the IPI
must write a 0 to this register.

M49-SPDDIR

The IPI can pick the direction of spindle rotation by writing a 3 for forward
(M03) or a 4 for reverse (M04). You can use this register in conjunction
with M48 to allow IPI the responsibilities of spindle control.

M50-HOMING

When set by the CNC to 1, this register indicates a homing sequence is
being processed. When the homing operation is complete, the CNC
resets the register to 0.

M51-LNFDLIM

Linear Axis feed limit. When the IPI writes a number to this register,
linear axes will run at the value stored in register M51. This value must
be expressed in metric and will be executed in feed per minute (FPM)
mode. The IPI supports Vector moves. The CNC feedrate override
switch continues to operate normally. If the value in register M51 is 0, the
programmed value or defaults will be used. This feature is intended to be
used as a safety feature in Manual mode. Do not use in Auto. The
feedrates of all subsequent MDI and jog moves will be limited to the
specified value after the value is assigned to the register.

NOTE: To change from one limited range to another, you must first reset
to zero. You can reset a higher limit lower, directly, but not the
opposite.

NOTE: Because the feedrate override switch operates normally, you
must divide the maximum allowed speed by 120%, and use this
value for M51.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Software

2-12 All rights reserved. Subject to change without notice.
 31-October-04

M52-ROFDLIM

Rotary Axis feed limit. When the IPI writes a number to this register,
rotary axes run at the value stored in register M52. You must express
this value in degrees/minute. The IPI will execute it in FPM mode. The
CNC feedrate override switch continues to operate normally. If the value
in register M52 is 0, the programmed value or defaults will be used. This
feature is intended to be used as a safety feature in Manual mode. Do
not use in Auto. The feedrates of all subsequent MDI and jog moves will
be limited to the specified value after the value is assigned to the register.

NOTE: To change from one limited range to another, you must reset to
zero first. You can reset a higher limit lower, directly, but not the
opposite.

NOTE: Because the feedrate override switch operates normally, you
must divide the maximum allowed speed by 120%, and use this
value for M52.

M53-SPDVOLT

Spindle voltage outputs a value in 0.01–V increments. For example, if
register value is 50, output equals 0.5 V. Use SPDVOLT along with
SPDDIR to select the direction.

M54-CMDRPM

Commanded Spindle RPM from the CNC. This is the S-word multiplied
by any spindle override switch settings. For example, S1000 with an 80%
setting would yield an 800 value in register M54. Should be used to
determine if spindle range errors, which IPI needs to act upon, are
present.

M55-HWSTOP

Handwheel Stop. Set to true (nonzero) to stop handwheel operations.
Set register to 0 (zero) to allow handwheel operations.

M56-AUTOINH

Set to 1 to inhibit AUTO or Single Step (S.STEP) mode. Set to 0 (zero) to
enable AUTO or Single Step (S.STEP) mode.

M57-FEED100

Feed 100% Override. Set to 1 to force feedrate override to 100%. Set to
0 (zero) to enable feedrate switch value.

M58-XSTART

External Start. Operation is identical to the input function and front panel
key.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Software

All rights reserved. Subject to change without notice. 2-13
31-October-04

P Registers

P (Parameter) registers store CNC Parameters set by the Setup Utilities.
These registers are read-only to the IPI. You can use them as conditions
in the IPI program with operands or in expressions.

P registers 1010 through 1019 are reserved to report the spindle speed
ranges from the Setup parameters. In the IPI program, you can access
the P-register number or the assigned label as described in Table 2-11.

Table 2-11, P Register Numbers and Assigned Labels
Register Assigned Label Purpose
P1010 M40LO M40 - Open gear range low limit
P1011 M40HI M40 - Open gear range high limit
P1012 M41LO M41 - Gear range low limit
P1013 M41HI M41 - Gear range high limit
P1014 M42LO M42 - Gear range low limit
P1015 M42HI M42 - Gear range high limit
P1016 M43LO M43 - Gear range low limit
P1017 M43HI M43 - Gear range high limit
P1018 M44LO M44 - Gear range low limit
P1019 M44HI M44 - Gear range high limit

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Software

2-14 All rights reserved. Subject to change without notice.
 31-October-04

General-Purpose, Multifunction Registers
M64–M255 are general-purpose, multifunction registers. They are read
and write registers that store intermediate values for later use.

Shared Registers

The IPI and CNC share 16 M-registers. These are CNC variables #1100
to #1115, which correspond to IPI M-registers 224 to 239, respectively.
These variables allow the IPI program and the CNC to exchange
information by reading and writing back and forth in both programs.
Example 1 - IPI to CNC
The CNC program can read a value written in the IPI program.
IPI program
command:

LD M55 M224 *Copies contents of M55 into
M224. (Example: M55 = 4.
Therefore, M224 = 4.)

Subsequently, in a CNC program:
CNC program
block:

If (#1100 > 1)then
print (Register 224,
variable 1100)

*Since CNC variable #1100
corresponds to IPI variable
M224, the CNC reads the value
stored in the IPI program (M224
= 4:#1100 = 4). Since 4 is
greater than 1, the CNC
executes the command and
prints, “Register 224, variable
1100”

Example 2 - CNC to IPI
The IPI program can read a value written in the CNC program.
CNC program
block:

#1101 = 2

*Sets CNC variable #1100 to 2.

Can be used in the IPI program as in:
IPI program
command:

IF 100 (M225 EQ 2) *Since IPI M-register M225
corresponds to CNC variable
#1101, the CNC reads the
value stored in the CNC
program (#1101 = 2.
Therefore, M225 = 2.) In this
case, M225 EQ 2 would be
TRUE and the conditional
instructions following the IF
block would be executed.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Software

All rights reserved. Subject to change without notice. 2-15
31-October-04

Static M-registers - M240–M255

The CNC reserves a range of 16 M-registers (M240–M255) that you can
use to store values you might need after a power-down condition.

The CNC saves the registers in a binary data file (IPIMREGS.DAT)
located in the system directory. When you start the CNC software from
the Software Options menu, the CNC reads the IPIMREGS.DAT file and
restores M240–M255 to their previously saved values. The data contain
a checksum to guard against corruption. If the CNC detects a corrupted
IPIMREGS.DAT file, the M240–M255 registers revert to their default
values (zero in all cases).

The CNC saves the registers every time a value within the range
changes. To avoid excessive disk operations and slow program
execution, do not program frequent value changes in the range. To
monitor errors in reading and writing the data file, check M44.

Timer Registers

Format Tn, n is a number 0–63.

There are 64 timing registers available (T0–T63). The instruction that first
uses a timer in a program configures it. Later references to the same
timer are only to sample its state value.

NOTE: 3300M/MK systems have only 16 timers (T0–T15).

The time delay is expressed in decimal seconds, read by the interpreter in
0.1 seconds.

Each timer actually uses two registers: a state register and a time-
keeping register. The RD instruction permits use of the countdown value
when necessary. For further information, refer to “Section 6 - Advanced
IPI Instructions.” Timers have a minimum period of 0.1 seconds. The
maximum period for timers is 24 days.

Sequence Registers

There are 256 sequence registers available. These are designated
S0–S255. Sequence registers are also available to the programmer at
any time. When any sequence register is set to a True value, all others
are automatically reset to False.

For example, when the IPI program starts, sequence register S0 is
always set to True. Therefore, all other sequence registers are False.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Software

2-16 All rights reserved. Subject to change without notice.
 31-October-04

I/O Boards

Refer to Figure 2-1 and Figure 2-2. The CAN I/O boards act as the
switchboard for the I/O system. When the I/O Board generates an output,
the output is a switched 24 V common from a sink board or +24 V DC
from a source board. Outputs are rated to carry a load of 5 A. Most
inputs from the system are received at the board and sent to the CNC for
evaluation. Upon command from the IPI program, the CNC signals the
I/O Board to generate an output at the specified location.

CAUTION: 24–V common is not a machine or earth ground. It is
an isolated source.

Y0:0

Y0:1

Y0:2

Y0:3

X0:0

X0:1

Outputs

Inputs

VLIM 0

Input 0:1

Figure 2-1, Sink I/O Board Input and Output Principles

Y0:0

Y0:1

Y0:2

Y0:3

+24 V DC

X0:0

X0:1

OutputsVLIM 0

Input 0:1

Inputs

+24 V DC

Figure 2-2, Source I/O Board Input and Output Principles

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Software

All rights reserved. Subject to change without notice. 2-17
31-October-04

IPI Monitor

The state value stored in input registers (X0:0 – X5:9), output registers
(Y0:0 – Y5:5), timer registers (T0–T64), and multifunction registers
(M0–M255) can all be viewed from the IPI Monitor.

Viewing the IPI Monitor

To access the IPI Monitor screen, perform the following steps:

NOTE: On 3300M/MK IPI systems use the QWERTY keyboard or
alternately press the +/- key in Manual, Auto, or Single Step
mode.

1. From the CNC software’s Manual mode, press P.

2. Press ENTER to display the IPI Monitor screen. Refer to either
Figure 2-3 or Figure 2-4, 3300M/MK IPI Monitor Screen.

NOTE: In Auto or S.Step, press P to activate the IPI Monitor screen.

Message Register

M, S, T, H Code Registers

Multifunction (M Registers)

Outputs (Y Registers)

IPI Flags

CNC Flags

Inputs (X Registers)

Timers (T Registers)

Current State Register

Figure 2-3, 4200T, 5300M/MK, 5400M/MK, and 5500M IPI Monitor Screen

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Software

2-18 All rights reserved. Subject to change without notice.
 31-October-04

Message Register
Current State RegisterCNC Flags

IPI Flags

M, S, T, H Code Registers

Outputs (Y Registers)Inputs (X Registers)Timers (T Registers)

Multifunction (M Registers)

Figure 2-4, 3300M/MK IPI Monitor Screen

The IPI Monitor displays the state values, 1 for True and 0 for False, for
the following registers:
 M registers
 X registers
 Y registers
 T registers

The IPI Monitor displays the numeric values for the following registers:
 M, S, T, and H codes from the CNC
 Message registers from the IPI to the CNC
 Current register’s value

Refer to Figure 2-5, CNC Flags for CNC flags from the CNC to IPI.
These are Read Only registers. Refer to Figure 2-6, IPI Flags for IPI
Flags from IPI to the CNC. These are Read/Write registers.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Software

All rights reserved. Subject to change without notice. 2-19
31-October-04

CNC Flags

Emergency Stop
(ESTOP - M6)

Spindle Enable
(SPINDLE - M0)

In Position
(POSN - M1)

Feed Mode
(FEED - M4)

24V Power Fail
(PWRFAIL - M3)

Manual Mode
(MAN - M16)

Axes at Home
(HOME - M13)

Tool Changer Finished Received
(TCFINACK - M12)

Spindle Drive Closed Loop
(SPLOOP - M14)

Run / Single Step
(RUN - M15)

Servo Off
(SVOFF - M5)

Reserved

Tool Change Macro End Flag
(TMACEND - M26)

Transmitting to IPI
(XMIT - M32)

Carry Flag/Register
(CARRY - M8)

Homing
(HOMING - M50)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-5, CNC Flags

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Software

2-20 All rights reserved. Subject to change without notice.
 31-October-04

IPI Flags

Finished
(FINISH - M33)

Servo Fault
(SVOFLT - M34)

Feed Hold
(FHOLD - M35)

Tool Changer Finished
(TCHGFIN - M36)

External Stop
(XSTOP - M37)

External Hold
(XHOLD - M38)

Spindle Gear Change
(SPDGRCH - M43)

Spindle Analog to 0 VDC
(SPDAN0V - M41)

Mode Inhibit
(AUTOINH - M56)

Handwheel Stop
(HWSTOP - M55)

Spindle 100% Override
(SPIN100 - M47)

Feed 100% Override
(FEED100 - M57)

Spindle Direction
(SPDDIR - M49)

External Start
(XSTART - M58)

Unused

Unused

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-6, IPI Flags

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Working with IPI

All rights reserved. Subject to change without notice. 3-1
31-October-04

Section 3 - Working with IPI

Configuring IPI Setup

Before you can program IPI, you must configure the system to recognize
IPI. Refer to Figure 3-1 for the menus referenced in this procedure. To
configure the CNC to recognize IPI:

1. Exit the CNC software and go to the Software Options Menu.

2. Highlight Setup Utility and press ENTER. Menu A, Setup Options,
activates.

3. Highlight Builder Setup and press ENTER. Menu B, Builder Setup,
activates.

4. Highlight Basic I/O Interface and press ENTER. Menu C, Interface
Setup, activates.

5. Highlight Type and press ENTER. The password prompt appears.

6. Type the password and press ENTER. A pop-up menu activates.

7. Highlight ANILAM IPI and press ENTER. The pop-up menu closes,
and ANILAM IPI is the active interface type.

Software Options
1. Control Software
2. Setup Utility
3. Motion Setup/Testing

Setup Options
1. Builder Setup
2. Operator Setup
3. Utilities
4. Units in Inch

Menu A
Setup Options Menu

Builder Setup

1. General Axis
2. Spindle Axis
3. Basic I/O Interface
4. Prog. I/O Interface
5. Handwheel DRO
6. Tool Management

Menu B
Builder Setup Menu

Disabled
CAN I/O
ANILAM IPI

Interface Setup

1. Type. Disabled
2. Timeout. 10,000
3. I/O Nodes. .

Menu C
Interface Setup Menu

Figure 3-1, IPI Setup Menus

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Working with IPI

3-2 All rights reserved. Subject to change without notice.
 31-October-04

Programming the IPI

Typically, IPI programming proceeds as follows:

1. The technician develops the program.

2. The technician accesses the Setup Utility, creates a new program,
and activates the IPI editor.

3. The technician enters or copies the IPI program. The technician can
write the program offline with a standard text editor.

4. The technician runs the loader and the loader compiles the code.
Error messages and warnings are posted on the screen as it runs,
then, they are saved to a file.

5. The technician views the error file and makes code changes as
needed. The technician recompiles as often as necessary.

6. When the compiler can compile a program successfully, it saves and
activates the compiled program.

File Names

An IPI file can have any valid filename. IPI assigns the filename
extensions automatically as follows:

IPI Program file FILENAME.DBO (text file)
IPI Executable FILENAME.DBI (binary file)
Compiler List File FILENAME.LST (text file)
Compiler Error File FILENAME.ERR (text file)

The DBO file is the program edited by the user.

DBI files are binary machine code generated by the loader as it compiles.
If any errors occur, the loader deletes the DBI file. This prevents
accidental execution of an IPI program that contains errors. The loader
generates binary output files only if no errors occur during the
compilation.

LST files are generated if the compiler is instructed to do so by the user
or if a #LIST directive is programmed.

ERR files contain errors or warnings generated by the compiler during
compilation.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Working with IPI

All rights reserved. Subject to change without notice. 3-3
31-October-04

Accessing Select Options Menu

Refer to Figure 3-2 for the menus referenced in this procedure.

To access IPI:

1. Exit the CNC software and access the Software Options Menu.

2. Highlight Setup Utility and press ENTER to activate Menu A, Setup
Options.

3. Highlight Builder Setup and press ENTER to activate Menu B,
Builder Setup.

4. Highlight Prog. I/O Interface and press ENTER to display the
Password prompt.

5. Type the password and press ENTER to activate Menu E, Select
Options.

Software Options

1. Control Software
2. Setup Utility
3. Motion Setup/Testing

Setup Options

1. Builder Setup

2. Operator Setup

3. Utilities

4. Units in Inch
Menu A

Setup Options

Menu C
Select Options Menu

Select Options

1. New Program
2. Select Program
3. Edit
4. Load
5. Utilities

Builder Setup

1. General Axis
2. Spindle Axis
3. Basic I/O Interface
4. Prog. I/O Interface
5. Handwheel DRO

Menu B
Builder Setup Menu

Figure 3-2, Accessing Select Options Menu

Using the IPI Editor

Before you run the Editor, select an existing program or create a new
program.

Creating a New Program

New program names can be any combination of letters and numbers, up
to eight characters. Do not use spaces or symbols. The appropriate
filename extension is forced to DBO, regardless of what is entered.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Working with IPI

3-4 All rights reserved. Subject to change without notice.
 31-October-04

To create a new IPI program:

1. From Menu E, Select Options Menu, highlight New Program, and
press ENTER. Refer to Figure 3-3.

Figure 3-3, Creating a New Program

The CNC prompts for the new program name. Refer to Figure 3-4.

Figure 3-4, Entering a New Program Name

2. Type a program name, and press ENTER.

When you run the Editor, the new program will be loaded.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Working with IPI

All rights reserved. Subject to change without notice. 3-5
31-October-04

Selecting an Existing Program

To edit an existing program:

1. From Menu E, Select Options Menu, highlight Select Program and
press ENTER. Refer to Figure 3-5.

Figure 3-5, Selecting an Existing Program

Menu F, Select Program activates. Refer to Figure 3-6.

Figure 3-6, Menu F, Select Program

2. Highlight the desired program name and press ENTER.

The selected program will be loaded when you activate the Editor.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Working with IPI

3-6 All rights reserved. Subject to change without notice.
 31-October-04

Activating the Editor

To activate the Editor:

1. Select or create a program.

2. From Menu E, Select Options menu, highlight Edit and press ENTER.
Refer to Figure 3-7.

Figure 3-7, Activating the Editor

The Editor activates and displays the selected program.

Loading and Compiling a Program

The compiler will run on any currently selected program.

To activate the compiler:

1. Select the desired program.

2. From Menu E, Select Options, highlight Load and press ENTER.
Refer to Figure 3-8.

Figure 3-8, Compiling and Loading a Program

The compiler activates and the screen displays compiling status, errors,
and warnings.

3. After compilation, press F10 to clear the screen.

If the program compiles successfully, the IPI software loads the program
into memory and runs it when you activate the Control software.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Working with IPI

All rights reserved. Subject to change without notice. 3-7
31-October-04

Optimizing the Development Cycle

During program development, it is often necessary to reset the IPI
program. An IPI program reset always occurs when you load the
program from the IPI development environment. The CNC software
provides a unique key sequence, or hot key, which allows you to reset an
IPI program without accessing the IPI development environment. The hot
key is F6-F6 (press F6 two times). You must execute it from the
Software Options screen. The Software Options screen is the screen
that allows you to access the Control Software, Setup Utilities, or
Motion/Setup Testing screens. The IPI program is assumed to be error-
free. The CNC software displays a message indicating the program has
been reset.

You can use another hot key to access the IPI development environment.
For this hot key to work you must have accessed the IPI development
environment through the Setup Utilities one time since your last entry
into the CNC software. This is necessary to satisfy the IPI password
requirement. The hot key is F7-F7 (press F7 two times). You must
execute it from the Software Options screen. To disable hot-key access
to the IPI development environment, reboot the system.

NOTE: You can reboot the system using the hot key F1-F2-F9-F10 from
the Software Options screen.

IPI File Management Soft Keys

The IPI software allows you to use soft keys to perform various file
management tasks. To perform any IPI File Management task, press the
SHIFT key, followed by the appropriate soft key. Refer to Table 3-1.

Table 3-1, IPI File Management Soft Keys

Softkey Label Key(s)
Delete F3
Copy F4
List F5
Load F6
Print F7
Edit F8
Restore (SHIFT + F3)
Copy ? (SHIFT + F4)
Mask (SHIFT + F5)
Rename (SHIFT + F8)
Display (SHIFT + F9)

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-1
31-October-04

Section 4 - Writing IPI Programs
How the Interpreter Uses Instructions

The IPI interpreter operates serially. It never calculates with more than
two values at once. The following types of values or states are available
for use:
 New element
 Current register
 Previous register

The current register and previous register are the two general-purpose
registers IPI uses for all functions. Refer to Figure 4-1.

The first instruction loads the first element into the current register. Some
instructions copy the value already in the current register to the previous
register and some do not. In this example, the first instruction is a Load
instruction and copies the current register value to the previous register.

The second instruction contains an operation that does not affect the
previous register and a second element. The operation is performed with
the value in the current register and the second element. The result is
kept in the current register. The value that was in the current register is
lost.

The third instruction also contains an operation that does not affect the
previous register and a third element. The operation is performed with
the value in the current register and the new element. The second result
remains in the current register and the first result is lost. As new
instructions are combined with values in the current register, the value in
the current register is constantly updated and old values are lost.

Figure 4-1, Interpreter Operation

You can send values in the current state register to an output or to
another register for storage. Only a few more advanced instructions use
the value in the previous register. Most instructions use the new
elements and the current register.

To program more efficiently, make the new element an expression
instead of a single element. When the new element is an expression, the
result of the expression is seen as the value or state of the new element.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-2 All rights reserved. Subject to change without notice.
 31-October-04

Program START and END Instructions

The START instruction informs the interpreter where to begin each
program cycle. The START instruction is optional and does not need to be
the first instruction in the program. Program instructions that precede
START are not repeated after the first cycle. If START is not used, all
instructions are executed every cycle.

Instructions inserted before START can begin initialization steps, which are
done only once. The IPI interpreter clears all of its registers and reads all
inputs at the first instruction, not at START.

The END instruction informs the interpreter that the program has finished.
The END instruction must be added to every program. When the
interpreter encounters END, it generates outputs on the I/O Board, based
on the states stored in the Y registers. The interpreter then transfers IPI
flags to the CNC and restarts the program. It runs only the instructions
that appear after the program START.

Table 4-1 describes each instruction.

Table 4-1, Start and End Instructions

Operation Description
START Denotes start of repeating portion of IPI program.

Optional.
END Must be last instruction in IPI program. Tells

interpreter program has finished. Time to
generate outputs and repeat cycle. Required.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-3
31-October-04

Building IPI Program Instructions

Program instructions are the lines of IPI code. Program instructions are
constructed using operation codes, elements, and expressions,
assembled in the proper format.

Instruction Operands

Instruction operands are values stored in input, output, sequence,
multifunction, and timer registers. These elements are identified by their
X, Y, S, M, and T designators, or by their assigned labels. An element
can also be a constant.

NOTE: Element names must be separated from other instruction
parameters by at least one blank space.

Operation Codes

IPI uses operation codes to identify different operations. Operation codes
inform the IPI of the following:
 What function to perform with new element or expression
 The value in the current register
 The value in the previous register (if used)

The operation code is not case sensitive. It can start on any column in
the line. Leading tabs and spaces will be ignored.

Expressions

Expressions perform Boolean operations, comparison operations, and
mathematical operations with pairs of operands. Expressions are
primarily used to perform conditional evaluations of numeric values.
However, both state values and numeric values can be used. Most
expressions produce state outputs. Only add and subtract expressions
produce numeric values. Use expressions to shorten program length or
provide options.

Expressions begin with a left parenthesis and end with a right
parenthesis. There must be a space after the left parenthesis and a
space before the right parenthesis. Only two elements (or one element
and one constant) separated by an operator, are permitted per
expression. Expressions cannot be nested. Insert the expression in an
instruction as if it were a single element.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-4 All rights reserved. Subject to change without notice.
 31-October-04

Expression results are converted to states or values as necessary to
complete an operation. Refer to Table 4-2. Expression results depend
on the type of operation performed.

Table 4-2, Expression Operands (State Value = s, Numeric Value = n)
Expression Definition

(s1 AND s2) Results in TRUE only when both operands are TRUE.
Otherwise, FALSE.

(s1 OR s2) Results in TRUE if either parameter is TRUE. Results in FALSE
only when both are FALSE.

(s1 ANI s2) Results in FALSE only when both parameters are TRUE.
Otherwise, TRUE.
CAUTION: The ANI function in an expression does not
operate the same as the ANI function in the instruction
set.

 (s1 ORI s2) Results in FALSE when either parameter is TRUE; is TRUE when
both are FALSE.
CAUTION: The ORI function in an expression does not
operate the same as the ORI function in the instruction
set.

(s1 XOR s2) Results in TRUE when only one parameter is TRUE. Results in
FALSE if both are in the same state.

(s1 XNR s2) Results in FALSE when one, but not the other parameter is
TRUE. The result is TRUE if both are in the same state.

(n1 + n2) Adds the two register values.
(n1 – n2) Subtracts the two register values. If the result is negative, an

overflow will occur, and the result is undefined.
(n1 EQ n2) Results in TRUE if the register values are the same.
(n1 NE n2) Results in TRUE if the register values are different.
(n1 GT n2) Results in TRUE if r1 is greater than r2.
(n1 LT n2) Results in TRUE if r1 is less than r2.
(n1 GE n2) Results in TRUE if r1 is greater than or equal to r2.
(n1 LE n2) Results in TRUE if r1 is less than or equal to r2.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-5
31-October-04

Numeric Parameters

Multifunction memory registers can store numeric values, as well as
Boolean true/false states. When combined with instructions containing
expressions, IPI can monitor numeric values as a condition. Numeric
values can be used in binary, octal, decimal, and hexadecimal formats.
However, the internal format is always binary.

There are two different types of values: byte values and word values.
Binary values range from 0 to 255. Word values range from 0 to 65535.
Binary, octal, decimal, and hex values will all be accepted. The default
base is decimal.

To designate another base, insert the base indicator to the right of the
number. Refer to Table 4-3.

Table 4-3, Number Base Indicators and Examples
Number Base Indicator Example (decimal equivalent)
Binary B 10110b = 10110 binary (22 decimal)
Octal O or Q 27q = 27 octal (23 decimal)
Decimal D or no indicator 27d or 27 = 27 decimal. (Default)
Hex H or X 4fh = 4f hex (79 decimal)

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-6 All rights reserved. Subject to change without notice.
 31-October-04

Creating Additional I/O Labels

Labels are used to reference strings of characters. If SPDLFWD has
been defined to represent Y0:6, when the compiler encounters the string
SPDLFWD, it will substitute Y0:6. As noted earlier, many permanent
labels are pre-assigned.

Since SPDLFWD is more specific, the program becomes easier to read
and understand. Labels can be used to reference specific elements,
specify delay values, and rename operation codes. The following rules
apply:

 Label names can be a string of any combination of alphanumeric
characters (1 to 32 characters). Do not use blank spaces. Names
must start with a letter.

 After a label has been defined, it cannot be redefined, deleted, or
changed in any way later in the program.

 All labels are active only in the program in which they are defined.

Refer to Compiler Directives for more information on creating labels.

Using Comments

The compiler ignores any line of code in an IPI program that starts with an
asterisk (*) or a semicolon (;). This feature allows the programmer to add
documentation to the program or to mark (“comment”) code to be ignored
by the compiler. A comment can be placed on the same line as program
instruction.
Active Instruction Explanatory comment ignored by compiler.
LD M55 *LOAD MULTI-FUNCTION REGISTER 55.

Blank lines are also allowed and will be ignored.

The compiler will not convert comments from *.DBO files into executable
*.DBI instructions.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-7
31-October-04

Finish Signal Generation

Generation of a proper finish signal is critical for proper IPI/CNC
interaction. Refer to Figure 4-2. Finish signals are processed as follows:

1. The CNC sends an M, S, T, or H Code to the IPI, and the IPI retrieves
the CNC flags from the CNC.

2. The CNC halts program execution and sets the IPI finish flag (M33-
FINISH) high. The CNC then waits for a FINISH low to resume
program execution. At the same time, the IPI internally clears the M,
S, T, or H Code.

3. The IPI internally clears the M, S, T, or H after the first iteration (rising
edge), when an M, S, T, or H code is seen. Otherwise, the IPI would
interpret an M, S, T, or H more than once (on the rising and falling
edges of the signal). This guarantees that a particular code is seen
only once.

4. When the M, S, T, or H is completed, the FINISH status is low. At this
point, the CNC sees the falling edge of the FINISH flag (low) and
program execution resumes.

Send MSTH To IPI

Send IPI flags To CNC

Done

Set FINISH HIGH on
MSTH

Get CNC flags
From
CNC

CNC continues normal
program execution.
FINISH is acknowledged
by CNC, which sends
MSTH = 0.

CNC holds program
execution. IPI
internally clears
MSTH.

Generation of
Finish Signal

finflow.vsd

Set FINISH LOW
when done processing

MSTH

Figure 4-2, IPI: M, S, T, or H Code to Finish Signal

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-8 All rights reserved. Subject to change without notice.
 31-October-04

IPI Operation Set

IPI programs can be written in various degrees of complexity. Available
instruction sets include the following, from the simplest to the most
complex:
 Single-element instructions
 Two-element instructions
 Two-element instructions that use an expression as one of the

elements
 Instructions that use timers
 Instructions that use the previous state register

You can write a complete IPI program with only single-element
instructions. However, the fewer the number of lines of instruction there
are, the faster the program will run.

Syntax is demonstrated using pairs of brackets to contain instruction
elements. Appropriate elements are identified by keywords.

Syntax format: “[keyword]”

Ladder diagram equivalents and truth tables are provided where
appropriate. Refer to Table 4-4 for a description of symbols used in the
ladder diagram.

Table 4-4, Ladder Diagram Symbols
Symbol Description

 A contact that is normally closed (when the relay is not energized).

 A contact that is normally open (when the relay is not energized).

A coil that signifies the end instruction for the rung.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-9
31-October-04

Table 4-5 provides a summary of available IPI operation codes. Refer to
Table 4-6, Detailed Descriptions and Examples of Operands, for detailed
explanations and examples of each operation code.

Table 4-5, Summary of IPI Operands
Operand Function

LD
See page 4-13.

Loads new element’s state value into current register. If new
element has numeric value, it is converted to appropriate
state value.
Loads any value already in the current register into the
previous register.

OUT
See pages 4-14

and 5-2.

Writes the value in the current register to the specified
register.
Only multifunction registers can receive numeric values. All
other registers convert value to a state.

LDI
See page 4-15.

Loads an element’s inverse state value to current register.
If current register had an initial value, it is moved to previous
register.
If element has numeric value, it is converted to appropriate
state value.

MOV
See page 4-16.

Combines functions of read and output into one operator.
Current and previous registers are not used.
Numeric values are moved intact if registers are compatible.
Value/state conversions occur otherwise.

MVA
See page 6-5.

Moves the selected node’s numerical analog value to a
multifunction register for evaluation.
There is one analog input per node 0–5. The last output, Bit
5, is jumper-selectable as an analog input.
NOTE: The Type of the corresponding CAN node must be

set to Digital/Analog in the Setup Utility.

RD
See page 5-3.

Loads element value into current register.
Copies any value already in the current register into the
previous register.
If element value is numeric, it is loaded as a numerical value.
If element value is a state value, it is loaded as a state value.
RD can be used to access a numeric value after a
mathematical operation or to load the count value of a timer.

AND
See page 4-17.

Performs a Boolean logic AND function with value in current
register and new element.
Result remains in current register. Previous register is
unaffected.

ANI
See page 4-18.

Performs a Boolean logic AND function with value in current
register and the inverse value of the new element.
Result remains in current register; previous register is
unaffected.

(Continued…)

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-10 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-5, Summary of IPI Operands (Continued)
Operand Function

OR
See page 4-20.

Performs Boolean logic OR function using new element and
state value in current register.
Result remains in current register; previous register is
unaffected.

ORI
See page 4-23.

Performs a Boolean logic OR function with value in current
register and the inverse value of the new element.
Result remains in current register; previous register is
unaffected.

ANB
See page 4-27.

Performs Boolean AND function with value in previous
register, value in current register and new element value.

ORB
See page 4-29.

Performs Boolean OR function with value in previous
register, value in current register and new element’s value.

SET
See page 4-31.

If current register holds a TRUE value, TRUE is copied in new
element’s register.
If current register holds a FALSE value, no activity occurs.
This instruction serves to latch the new element to a TRUE
value for subsequent cycles.
A subsequent MOV statement or a RES instruction can be
used to unlatch the register.

RES
See page 4-32.

This instruction resets the new element to a FALSE value for
subsequent cycles.
If current register holds a TRUE value, FALSE is copied in new
element’s register.
If current register holds a FALSE value, no activity occurs.
A subsequent MOV statement or a SET instruction can be
used to re-latch the register.

CTL/CTR
See page 4-33.

Used in pairs.
CTL - ANDs specified element with all subsequent
instructions until deactivated.
CTR - deactivates any active CTL instructions.

DEC
See page 4-35.

For every cycle in which the current register value is true, the
numeric value of the new element decreases.

INC
See page 4-35.

For every cycle that the current register value is true, the
numeric value of the new element increases.

RST
See page 5-4.

Restart instruction. Restarts countdown timer if current
register‘s state value is TRUE and designated timer is
currently in a delay countdown state.

NOP
See page 4-35.

No operation is performed.

(Continued…)

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-11
31-October-04

Table 4-5, Summary of IPI Operands (Continued)
Operand Function

INV
See page 4-25.

Inverts specified element.
Inverts current register when no element is specified.
If the value to be inverted is numeric, it is converted to a
state value and then inverted.

IF/ELS/EDF
See page 6-2.

IF - Begins conditional statement. CNC executes
subsequent instructions if relevant register value is true. The
relevant register value is the current register or the new
element register.
ELS - Provides intermediate step in the process. Executes
subsequent instructions if new expression, new element or
current register is FALSE.
EDF - Terminates conditional instruction set.

CLP/EJP
See page 6-4.

CLP - Begins conditional statement. Executes subsequent
instructions if new element, new expression or current
register value is FALSE. Jumps to EJP instruction if TRUE.
EJP - Ends conditional jump instruction set.

OKBD
See page 6-5.

Output keyboard instruction. Used to output key codes to
the CNC. The CNC interprets these key codes as if the user
had pressed the corresponding key. Only one key code can
be passed per IPI scan.
For a key code to be interpreted by the CNC, it must be
different from scan to scan.

OTI
See page 6-6.

Output until input. Specified output is energized for a
maximum of 30 seconds or until the corresponding input is
energized. The output can be a Y value.
NOTE: The input number may be different from the output

number. In this case, use OTI within the same node.
An LD or LDI command must be programmed directly before
the OTI in order to specify the input bit. Additionally, the
qualifying LD or LDI must be an expression using physical
input bits. See also SOTI (Super OTI) and COTI (cancels
OTI and SOTI).

OWI
See page 6-8.

Output when input. The specified output is latched on
immediately on input. Transition must be from FALSE to
TRUE.
NOTE: The input number may be different from the output

number. In this case, use OWI within the same node.
An LD or LDI command must be programmed directly before
the OWI in order to specify the input bit. Additionally, the
qualifying LD or LDI must be an expression using physical
input bits.
The specified input bit is the same node location as the
specified output on the corresponding input port.
Load input with either LD or LDI. LD is for a positive trigger
and LDI is for a negative trigger. Follow immediately (or
before another Load instruction) with the OWI statement.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-12 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-5, Summary of IPI Operands (Continued)
Operand Function

SOTI
See page 6-9.

Super OTI works like OTI but the number of input pulses
required to turn the output off can be specified (instead of it
being hard-coded to 1 as in OTI). Output until input
instruction.
NOTE: The input number may be different from the output

number. In this case, use SOTI within the same
node.

An LD or LDI command must be programmed directly before
the SOTI in order to specify the input bit. Additionally, the
qualifying LD or LDI must be an expression using physical
input bits. See also OTI (output until input) and COTI
(cancels OTI and SOTI).

COTI
See page 6-10.

Cancel OTI or SOTI command immediately.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-13
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands
LD Syntax Valid Elements

Loads new element’s state
value into current register.
If new element has numeric
value, it is converted to
appropriate state value.
Loads any value already in
the current register into the
previous register.

LD [element]

 - Ladder Equiv.

 - Logical Symbol

M registers
T registers
S registers
X registers
Y registers
Expressions

Examples Explanation
LD Example #1
One state value element.
LD X0:2

State value in X0:2 register is copied to current register. Current
register’s previous value is copied to previous register.

LD Example #2
One multifunction element.
LD M55

If multifunction register’s value is numeric, value is converted to
state value equivalent and is loaded into current register. Current
register’s previous value is copied to previous register.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-14 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

LD Example #3
Expression used as
element.
LD (X0:0 AND X0:1)

X0:0 is ANDed with X0:1 and resulting state is loaded in current
register. Current register’s previous value is copied to previous
register.

OUT Syntax Valid Elements

Writes the value in the
current register to the
specified register.
Only multifunction registers
can receive numeric values.
All other registers convert
value to a state.

OUT [element]

M registers
T registers
S registers
X registers
Y registers

Examples Explanation
OUT Example #1
One element.
OUT Y1:0

Value in current register is sent to Y1:0 register. Value in Y1:0
register must be a TRUE/FALSE state.

OUT Example #2
One element.
OUT M70

Value in current register is sent to M70 register. Value sent to
M70 register can be a state or number.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-15
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
LDI Syntax Valid Elements

Loads element’s state value
to current register.
If current register had
value, it is moved to
previous register.
If element has numeric
value, it is converted to
appropriate state value.

LDI [element]

 - Ladder Equiv.

 - Logical Symbol

Y registers
M registers
T registers
S registers
X registers
Expressions

Examples Explanation
LDI Example #1
One element.
LDI X0:2

X0:2’s inverse state is determined and saved in the current
register. Current register’s previous value is copied to previous
register.

LDI Example #2
Expression used as
element.
LDI (X0:0 AND X0:1)

X0:0 is ANDed with X0:1, the inverse is determined and stored in
the current register. Current register’s previous value is copied to
previous register.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-16 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
MOV Syntax Valid Elements

Without qualification, a
value or state is
unconditionally put into the
target element.
Current and previous
registers are not used.
Numeric values are moved
intact if registers are
compatible. Otherwise,
values/state conversions
occur.

MOV [element] [element] Y registers
M registers
T registers
S registers
X registers
Constants
Expressions

Examples Explanation
MOV Example #1
Two elements.
MOV X0:2 Y0:5

State value of input register X0:2 is read and copied into output
register Y0:5. Current register and previous register are not
involved.

MOV Example #2
Constant and element.
MOV 500 M50

Numeric value of 500 is loaded into multifunction register M50.
Current register and previous register are not involved.

MOV Example #3
Expression and element.
MOV (X0:2 AND X0:5)
Y1:0

State values in X0:2 register and X0:5 register are ANDed within
the expression. The resulting state is loaded into the Y1:0 output
register. Current register and previous register are not involved.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-17
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
AND Syntax Valid Elements

Performs a Boolean logic
AND function with value in
current register and new
element.
Result remains in current
register. Previous register
is unaffected.

AND [Element] Y registers
M registers
T registers
S registers
X registers
Expressions

Truth Table Ladder Equivalent Logic Symbol

R

Examples Explanation
AND Example #1
Two parameter instructions.

LD (X0:5 OR Y0:5)

State values of X0:5 and Y0:5 registers are ORed and loaded into
current register. Current register’s previous value is copied into
previous register.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-18 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

AND (M100 OR X0:9)

OUT M55

Value in register M100 is converted to a state value and ORed
with state value stored in register X0:9. The result is ANDed with
the earlier result, generating the final result. Final result remains
in current register.

State value in current register is copied into M55 register.

ANI Syntax Valid Elements

Performs a Boolean logic
AND function with value in
current register and the
inverse value of the new
element.
Result remains in current
register; previous register is
unaffected.

ANI [element] Y registers
M registers
T registers
S registers
X registers
Expressions

Truth Table Ladder Equivalent Logic Symbol

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-19
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

ANI Example #1
ANI X0:9

Inverse state of X0:9 register is ANDed with the state value in the
current register. Result is kept in current register.

OUT M55 Value in current register is sent to register M55.

ANI Example #2

LD (X0:2 OR Y1:0)

State values in X0:2 and Y1:0 registers are ORed, resulting state
is loaded into current register. Current register’s previous value is
copied into previous register.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-20 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

ANI X0:3 State value stored in input register X0:3 is inverted and ANDed to
previous result. Final result remains in current register.

OUT Y1:0 State value in current register is copied to Y1:0 output register.

OR Syntax Valid Elements

Performs Boolean logic OR
function using new element
and state value in current
register.
Result remains in current
register. Previous register
is unaffected.

OR [element] Y registers
M registers
T registers
S registers
X registers
Expressions

Truth Table Ladder Equivalent Logic Symbol

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-21
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)

Examples Explanation
OR Example #1

LD X1:0

OR X1:5

Input state of X1:0 is loaded into current register. Current
register’s previous value is copied into previous register.

Input state of X1:5 register is ORed with the state value in the
current register. Result is kept in current register

OUT M55

Value in current register is sent to register M55.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-22 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)

Examples Explanation

OR Example #2

LD (X1:0 AND M100)

OR (T20 AND X1:5)

State value in X1:0 register and state value equivalent in M100
register are ANDed. Result is loaded into current register.
Current registers previous value is copied into previous register.

Timer 20 state value and state value in X1:5 register are ANDed,
then ORed with the value in the current register. Final result
remains in current register.

OUT M55

Value in current register is copied to M55 register.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-23
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
ORI Syntax Valid Elements

Performs a Boolean logic
OR function with value in
current register and the
inverse value of the new
element.
Result remains in current
register; previous register is
unaffected.

ORI [element] Y registers
M registers
T registers
S registers
X registers
Expressions

Truth Table Ladder Equivalent Logic Symbol

Examples Explanation
ORI Example #1

LD X1:0

Input state of X1:0 is loaded into current register. Current
register’s previous value is copied into previous register.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-24 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

ORI X1:5

OUT M55

ORI Example #2

LD (X1:5 AND M95)

Input state of X1:5 status register is inverted and ORed with the
state value in the current register. Result is kept in current
register.

Value in current register is sent to register M55.

State value in X1:5 register and equivalent state value in M95
register are ANDed. Result is loaded into current register.
Current register’s previous value is copied into previous register.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-25
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

ORI T25

OUT M70

Timer T25’s state value is inverted and ORed with value in
current register. Final result is kept in current register.

Value in current register is copied to M70 register.

INV Syntax Valid Elements
Inverts specified element.
Inverts current register
when no element is
specified.
If the value to be inverted is
numeric, it is converted to a
state value and then
inverted.

INV [element]
 – or –
INV

Y registers

Truth Table Ladder Equivalent Logic Symbol

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-26 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

INV Example #1
INV Y0:4

State value of Y0:4 register is inverted. Current and previous
registers not affected.

INV Example #2

LD X0:4

OR M55

INV
OUT Y0:4

Loads X0:4 input into current register. Current register’s previous
value is copied into previous register.

ORs value in current register with M55. Result held in current
register.

Inverts result and sends to Y0:4 register.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-27
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
ANB Syntax Valid Elements

Performs Boolean AND
function with value in
previous register, value in
current register and new
element’s value.

ANB [element] Y registers
M registers
T registers
S registers
X registers
Expressions

Truth Table Ladder Equivalent Logic Symbol

Examples Explanation
ANB Example #1

LD (X1:0 OR T20)

Loads result of expression into current register, copies current
value of current register into previous register.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-28 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

OR X1:2

LD (M100 OR X1:5)

OR M125

Current register’s value is ORed with value in X1:2 register, result
remains in current register. OR operation does not change value
in previous register.

Value in current register is copied to previous register. Resulting
value of new expression is loaded into current register.

Value in current register is ORed with value of new element,
result remains in current register. OR operation does not change
value in previous register.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-29
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

ANB M70 Value in previous register, current register and new element are
ANDed together to produce result that remains in current register.

ORB Syntax Valid Elements

Performs Boolean OR
function with value in
previous register, value in
current register and new
element’s value.

ORB [element] Y registers
M registers
T registers
S registers
X registers
Expressions

Truth Table Ladder Equivalent Logic Symbol

Examples Explanation
ORB Example #1

LD (X1:0 AND M100)

Copies value in current register to previous register, evaluates
new expression and loads resulting value into current register.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-30 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

AND X0:5

ORB Example #2
LD (X1:2 AND M50)

AND X0:7

ORB (T20 AND X1:5)

Value in Current register is copied to previous register; new
expression is evaluated and result remains in current register.

NOTE: The value shown in the previous register is the result of
ORB Example #1.

Value in current register is ANDed with new element. Result
remains in current register.

New expression is evaluated and its value ORed with value in
current register and value in previous register; final result remains
in current register.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-31
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

OUT M55 Copies value in current register to M55 multifunction register.

SET Syntax Valid Elements

This instruction latches the
new element to a TRUE
value for subsequent
cycles.
If current register holds a
TRUE value, a TRUE state
value is copied into the new
element’s register.
If current register holds a
FALSE value, no activity
occurs.
A subsequent MOV
statement or a RES
instruction can be used to
unlatch the register.

SET [element] Y registers
M registers

Truth Table Ladder Equivalent Logic Symbol

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-32 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

SET Example #1

LD X0:2

SET Y1:0

Loads current value into previous register and loads value in X0:2
register into current register.

Sets value in Y1:0 register to true if X0:2 was true. No action
taken if X0:2 was false.

RES Syntax Valid Elements
This instruction resets the
new element to a FALSE
value for subsequent
cycles.
If current register holds a
TRUE value, FALSE is copied
in new element’s register.
If current register holds a
FALSE value, no activity
occurs.
A subsequent MOV
statement or a SET
instruction can be used to
relatch the register.

RES [element] Y registers
M registers

Truth Table Ladder Equivalent Logic Symbol

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-33
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

RES Example #1

LD X0:3

RES Y1:0

Copies value from current register into previous register and
loads value from X0:3 register into current register.

Resets value in Y1:0 register to FALSE if X0:3 was TRUE. No
action taken if X0:3 was FALSE.

CTL/CTR Syntax Valid Elements
Used in pairs.
CTL - ANDs specified
element with all subsequent
instructions until
deactivated.
CTR - deactivates any
active CTL instructions.

Activate
CTL [element]

Deactivate
CTR

Y registers
M registers
T registers
S registers
X registers

 Ladder Equivalent

Examples Explanation

CTL/CTR Example #1

Moves value from current register to previous register and loads
new expression result into the current register.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Writing IPI Programs

4-34 All rights reserved. Subject to change without notice.
 31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

LD (X1:0 AND M90)

AND T5

(X0:0 AND M90)

Value in current register is ANDed with T5 register’s state value.
Result remains in current register.

OUT M95

CTL M95

MOV (M100 AND X0:5)
Y0:2

MOV (M50 AND X0:7)
Y0:3

MOV X1:5 M75

CTR

Copies the value in the current register to multifunction register
M95.

Specifies that value in M95 register will be ANDed with all
subsequent instructions.
New expression result is ANDed with value in M95 register.
Result is copied directly to Y0:2 register.

Next expression is ANDed with value in M95 register. Result is
copied directly to Y0:3 register.

Next expression is ANDed with value in M95 register. Result is
copied directly to M75 register.

CTL function deactivated.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Writing IPI Programs

All rights reserved. Subject to change without notice. 4-35
31-October-04

Table 4-6, Detailed Descriptions and Examples of Operands (Continued)
DEC Syntax Valid Elements

Every cycle that the current
register value is true
causes a decrease in the
new element’s numeric
value by 1.
Numbers cannot decrease
to less than zero.

DEC [element] M registers

Examples Explanation
DEC Example #1
LD X0:2

DEC M80

Copies value from current register into previous register. Loads
value from X0:2 register into current register.

If current register’s value went from false to true during this cycle,
the M80 register value is decreased by 1.

INC Syntax Valid Elements
Every cycle that the current
register value remains TRUE,
the new element’s numeric
value increases by 1.

INC [element] M registers

Examples Explanation
INC Example #1
LD X0:2

INC M80

Copies value from current register into previous register and
loads value from X0:2 register into current register.

If current register’s value went from false to true during this cycle,
the M80 register value is increased by 1.

NOP Syntax Valid Elements
No operation is performed. NOP

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Timers

All rights reserved. Subject to change without notice. 5-1
31-October-04

Section 5 - Timers
Timed events count through as many program cycles as are required in
the course of their operation. This is one reason for short IPI cycles being
efficient. The shorter the cycle, the closer timers can operate to real time.

Timers employ two registers: a state register that contains the true/false
value used by the program and a counting register to count down time.
The counting register’s real-time numeric value in a cycle can be
accessed using an RD instruction. The timer’s state value is normally
used to generate an output.

Use the following instructions to generate an output with a timer:
OUT instruction This instruction appears first in the program and always

uses the OUT operation code. It assigns the timer
identifier number, defines the current register’s state
value (at the point it appears in the program as the
source or triggering event), and specifies the timer
configuration and countdown period.

MOV instruction Subsequent references to a timer register will move the
real-time state value of the timer register to some other
register, where it is used as a condition or to produce an
output.

There are three timer configurations:
Delayed On
Format:
TON X.X
X=time in
seconds

If the current register value changes from FALSE to TRUE
during the current cycle, the timer begins a countdown
that lasts the specified number of seconds. When the
countdown is complete, the timer’s state register loads
the high. In a future cycle, if the current register
changes to FALSE, at the same time in the program, the
timer’s state register returns to low, with no delay. The
timer will restart the countdown on the next TRUE.

Delayed Off
Format:
TOFF X.X
X=time in
seconds

If the current register’s value changes from TRUE to
FALSE during the current cycle, the timer begins a
countdown that lasts the specified number of seconds.
When countdown is complete, the timer’s state register
loads the FALSE. In a future cycle, if the current
register’s state changes to TRUE, at the same time in the
program, the timer’s state register returns to TRUE, with
no delay. The timer will restart the countdown on the
next FALSE.

Delayed On
Then Off
Format:
T1 X.X
X=time in
seconds

If the current register’s state (FALSE/TRUE) becomes
the inverse of the current timer’s state value
(TRUE/FALSE), the timer begins a countdown. When
the countdown is complete, the timer’s state value
switches between TRUE/FALSE.
In a future cycle, if the current register’s state fluctuates
between true and FALSE before the countdown finishes, it
will have no effect on the timer’s state value.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Timers

5-2 All rights reserved. Subject to change without notice.

 31-October-04

All timer definition instructions use the OUT or MOV operations, as shown
in Table 5-1. Refer to Table 5-2, Detailed Descriptions and Examples of
Operands.

Table 5-1, Timer Instruction Definitions
OUT Instruction Syntax Valid parameters

This instruction must
precede all MOV
instructions for the
same timer.

OUT T[type] [identifier] [time] Types:
ON
OFF
{blank}
Identifiers:
0 through 49
Time:
Decimal seconds.

Examples Explanation
Delayed On
OUT TON10 0.1

MOV T10 Y1:0

If the current register’s value changes from FALSE to TRUE during the
current cycle, the T10 timer begins a 100 msec countdown. In 100
msec, the T10 register will load and maintain a TRUE value. In a
future cycle, if the current state register turns from TRUE to FALSE at
the same time in the program, the T10 register will load and maintain
a FALSE value with no delay.

Copies the value in the T10 register to the Y1:0 register every cycle.

Delayed Off
OUT TOFF10 0.1

MOV T10 Y1:0

If the current register’s value changes from TRUE to FALSE during the
current cycle, the T10 timer begins a 100 msec countdown. In 100
msec, the T10 register will load and maintain a FALSE value. In a
future cycle, if the current state register turns from FALSE to TRUE at
the same time in the program, the T10 register will load and maintain
a TRUE value with no delay.
Copies the value in the T10 register to the Y1:0 register every cycle.

OUT Instruction Syntax Valid parameters
Delayed On/Off
OUT T10 0.1

MOV T10 Y1:0

If the current register’s value changes from FALSE to TRUE during the
current cycle, the T10 timer begins a 100 msec countdown. In 100
msec, the T10 register will switch its state value. In a future cycle, if
the current state register turns from TRUE to FALSE at the same time
in the program, it has no effect on the state in the T10 register.

Copies the value in the T10 register to the Y1:0 register every cycle.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Timers

All rights reserved. Subject to change without notice. 5-3
31-October-04

Table 5-2, Detailed Descriptions and Examples of Operands
RD Syntax Valid Elements

Loads element value into
current register.
Copies any value already in
the current register into the
previous register.
If element value is numeric,
it is loaded without
conversion to a state.
If element value is a state
value, it is loaded as a state
value.
RD can be used to access
a numeric value after a
mathematical operation or
to load the count value of a
timer.

RD [element] Y registers
M registers
T registers
S registers
X registers

Examples Explanation
RD Example #1
Read timer count.
RD T20

Copies T20’s timer count into current register as a numeric
value. Timer’s state value is not used.

(Continued…)

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Timers

5-4 All rights reserved. Subject to change without notice.

 31-October-04

Table 5-2, Detailed Descriptions and Examples of Operands (Continued)
Examples Explanation

RD Example #2
Read multifunction register
value.
RD M55

Copies M55 value into current register. If value is numeric, it is
not converted to a state.

RST Syntax Valid Elements

Restart instruction that
restarts countdown timer if
current register‘s state
value is TRUE and
designated timer is
currently in a delay
countdown state.

RST [element] T registers

Example Explanation
RST Example #1
RST T1

T1’s count value is set to the configured preset value. Timer’s
logic state is not affected.

Timer Off (TOFF) Command

In the example in Figure 5-1, input X0:0 initiates the TOFF command. At
1 second, the input goes low. The output of timer T0 stays high until the
timer counts to 5 seconds. Then, the output goes low. When the input
goes high, the output immediately goes high. The timer is non-retentive,
so that the transitions from 14 seconds to 19 seconds do not affect the
output.

LD X0:0

OUT TOFF0 5.0

0 1 5 6 7 8 10 13 14 15 20 25 Seconds

Figure 5-1, Timer Off Command

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Timers

All rights reserved. Subject to change without notice. 5-5
31-October-04

Timer Delayed On Then Off (T) Command
In the example in Figure 5-2, input X0:1 initiates the Timer Delayed On
Then Off command. At 1 second, the input goes high. The output of T1
stays low until the timer counts to 5 seconds. Then, the output goes high.
The output stays high until the input goes for 5 seconds, then the output
goes low. Inputs of less than the timer value cause no change in output,
as in the transitions from 13 seconds to 16 seconds. The timer is non-
retentive, so that each time the input changes the count is restarted.

6 710 85 10 12 13 14 15 20 25 Seconds

LD X0:1

OUT T1 5.0

Figure 5-2, Timer Delayed On Then Off Command

Timer On (TON) Command
In the example in Figure 5-3, input X0:2 initiates the TON command. At
1 second, the input goes high. The output of timer T0 stays low until the
timer counts to 5 seconds. Then, the output goes high. When the input
goes low, the output immediately goes low. The timer is nonretentive, so
that the transitions from 14 seconds to 19 seconds do not affect the
output.

OUT TON2 5.0

LD X0:2

0 1 5 6 7 8 10 13 14 15 20 25 Seconds

Figure 5-3, Timer On Command

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Advanced IPI Instructions

All rights reserved. Subject to change without notice. 6-1
31-October-04

Section 6 - Advanced IPI Instructions
This section describes advanced IPI instructions.

IF/ELS/EDF Instructions

Conditional statements allow the programmer to vary the instructions,
based on the value of a given register or expression. Refer to
Table 6-1 for the available conditional statement commands.

Table 6-1, Conditional Instructions

Conditional Instruction Function
IF If
ELS Else
EDF End if
CLP Conditional jump
EJP End jump

IF, ELS, EDF, CLP, and EJP form instruction sets.

Each complete set of conditional instructions must be numbered. Both
the compiler and the IPI interpreter use this block number to separate
nested IFs. IF block numbers may be reused at different points in the
program, but should be unique regarding currently active IF levels. The
block number follows the “IF” command, as follows:

Format 1: IF [block number]

An IF statement may include an optional new expression or element. If
the IF statement includes a new expression or element, the conditional
statement is based on its value. Otherwise, the value in the default
register is used. The currently active register is the default.

Format 2: IF [block number] [optional element or expression]

Refer to Format 2. When the CNC executes an IF statement, it evaluates
the value in the current register of the new element or expression. If the
value is True, the IPI interpreter will execute the subsequent instructions
until it encounters a matching ELS or EDF. If the new element or
expression is False, the interpreter skips to the matching ELS or EDF
instruction.

When a matching ELS is encountered, if the new element/expression or
current register is False, the instructions following the ELS are processed.

A matching EDF instruction terminates the process and sequential
program execution resumes.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Advanced IPI Instructions

6-2 All rights reserved. Subject to change without notice.
 31-October-04

IF/ELS/EDF sets can be nested. A nested IF/EDF set can be placed
within a parent CJP/EJP or IF/EDF set. The nested set must be closed
before the parent set is closed. The programmer can nest conditional
statement sets up to ten levels deep. Refer to the examples in Table 6-2.

Table 6-2, Conditional Statement Programming - Examples
IF/ELS/EDF Syntax Valid Parameters

IF – Begins conditional statement.
CNC executes subsequent
instructions if relevant register value
is True. The relevant register value
is the current register or the new
element register.

IF [block number]
– or –
IF [block number] [element]

Elements:
Y registers
M registers
T registers
S registers
X registers

IFI – Inverse IF. Also used to begin
a conditional statement. CNC
executes subsequent instructions if
relevant register value is TRUE. The
relevant register value is the current
register or the new element register.

IF [block number]
– or –
IF [block number] [element]

Elements:
Y registers
M registers
T registers
S registers
X registers

ELS – Provides intermediate step in
the process. Executes subsequent
instructions if new expression, new
element or current register is FALSE.

ELS [block number] Block Numbers:
Any integer, all numbers must
match.

EDF – Terminates conditional
instruction set.

EDF [block number]

Examples Explanation
IF 25
First Instruction Set
ELS 25
Second Instruction Set
EDF 25

If value in current register* is TRUE, first instruction set is
executed and the second instruction set is ignored.
If value in current register is FALSE, first instruction set is
ignored and second instruction set is executed. EDF
terminates instruction set.

IF 80 X5
First Instruction Set
ELS 80
Second Instruction Set
EDF 80

If value in X5 register is TRUE, first instruction set is executed
and the second instruction set is ignored.
If value in X5 register is FALSE, first instruction set is ignored
and second instruction set is executed. EDF terminates
instruction set.

IF 60 (M50 NE 25)
First Instruction Set
ELS 60
Second Instruction Set
EDF 60

If result of expression (M50 NE 25) is TRUE, first instruction
set is executed and the second instruction set is ignored.
If result of expression (M50 NE 25) is FALSE, first instruction
set is ignored and second instruction set is executed. EDF
terminates instruction set.

*NOTE: When no element is provided in the IF statement block, the CNC uses the default register,
which is the currently active register.

(Continued…)

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Advanced IPI Instructions

All rights reserved. Subject to change without notice. 6-3
31-October-04

Table 6-2, Conditional Statement Programming – Examples (Continued)
Examples Explanation

IFI 25
First Instruction Set
ELS 25
Second Instruction Set
EDF 25

If value in current register* is FALSE, first instruction set is
executed and the second instruction set is ignored.
If value in current register is TRUE, first instruction set is ignored
and second instruction set is executed. EDF terminates
instruction set.

IFI 80 X5
First Instruction Set
ELS 80
Second Instruction Set
EDF 80

If value in X5 register is FALSE, first instruction set is executed
and the second instruction set is ignored.
If value in X5 register is TRUE, first instruction set is ignored and
second instruction set is executed. EDF terminates instruction
set.

IFI 60 (M50 NE 25)
First Instruction Set
ELS 60
Second Instruction Set
EDF 60

If result of expression (M50 NE 25) is FALSE, first instruction set
is executed and the second instruction set is ignored.
If result of expression (M50 NE 25) is TRUE, first instruction set is
ignored and second instruction set is executed. EDF terminates
instruction set.

*NOTE: When no element is provided in the IF statement block, the CNC uses the default
register, which is the currently active register.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Advanced IPI Instructions

6-4 All rights reserved. Subject to change without notice.
 31-October-04

Conditional Jumps

The conditional jump (CLP) instruction acts like an IF/ELS/EDF statement
with no instructions given between IF and ELS.
Format 1: CLP [block number]

A CLP statement may include an optional new expression or element. If
the CLP statement includes a new expression or element, the conditional
statement is based on its value. Otherwise, the value in the default
register is used. The current register is the default.
Format 2: IF [block number] [optional element or expression]

When the CNC executes a conditional jump, the value in the current
register or the new element/expression is evaluated. If the value is False,
the IPI interpreter will execute the subsequent instructions. If the value is
True, the program jumps to the end jump (EJP) instruction.

In all cases, the EJP instruction concludes the instruction set and
sequential program execution resumes.

CLP/EJP sets can be nested. A nested CLP/EJP set may be placed
within a parent CLP/EJP or IF/EDF set. The nested set must be closed
before the parent set is closed. The programmer can nest up to ten
levels of conditional statement sets. Refer to the examples in Table 6-3.

Table 6-3, Conditional Jump Programming - Examples
CLP/EJP Syntax Valid Elements

CLP – Begins conditional
statement. Executes
subsequent instructions if
new element, new
expression or current
register value is FALSE.
Jumps to EJP instruction if
TRUE.

CLP [block number] [element]
– or –
CLP [block number]

Elements:
Y registers
M registers
T registers
S registers
X registers
Block Numbers:

EJP – Ends conditional
jump instruction set.

EJP [block number] Any integer, all numbers must
match.

Examples Explanation
CLP 20
Conditional Instructions
EJP 20

If value in current register* is TRUE, conditional instructions are
ignored. CNC jumps to EJP. If value in current register is FALSE,
conditional instructions are executed. EJP terminates instruction set.

CLP 35 X0:5
Conditional Instructions
EJP 35

If value in X0:5 register is TRUE, conditional instructions are ignored.
CNC jumps to EJP. If value in X0:5 register is FALSE, conditional
instructions are executed. EJP terminates instruction set.

CLP 55 (M50 NE 25)
Conditional Instructions
EJP 55

If resulting value of expression (M50 NE 25) is TRUE, conditional
instructions are ignored. CNC jumps to EJP. If value of expression
is FALSE, conditional instructions are executed. EJP terminates
instruction set.

*NOTE: When no element is provided in the CLP statement block, the CNC uses the default
register, which is the currently active register.

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Advanced IPI Instructions

All rights reserved. Subject to change without notice. 6-5
31-October-04

Refer to Table 6-4.

Table 6-4, Detailed Descriptions and Examples of Advanced IPI Instructions
MVA Syntax Valid Elements

Digital value of analog input
at specified node is loaded
into the specified
multifunction register.

MVA [element] [element] Y registers
M registers

Example Explanation

MVA Example #1

Two elements.

MVA Y0:5 M100

Digital value of analog input at node 0 is loaded into multifunction
register 100.

OKBD Syntax Common Key Codes

Output Keyboard instruction
is used to output key codes
to the CNC in an IPI
program. The CNC
interprets these key codes
as if the user had pressed
the corresponding key.
Only one key code can be
passed per IPI scan. For a
key code to be interpreted
by the CNC, it must differ
from scan to scan.

OKBD [xxxxH]
– or –
OKBD [xxxxX]

CNC Key PC Key (Hex Notation)
Start ALT_S (11FH)
Hold ALT_H (123H)
Spindle CW ALT_F (121H)
Spindle CCW ALT_G (122H)
Spindle Stop ALT_O (118H)
Clear ALT_C (12EH)

NOTE: Hexadecimal notation can be
indicated by an X or H
following the number.

Example Explanation

OKBD Example #1

OKBD 11FH

The START (ALT_S) key code is output. It has the same effect
as physically pressing the required key on a PC keyboard or
console keypad.

(Continued…)

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Advanced IPI Instructions

6-6 All rights reserved. Subject to change without notice.
 31-October-04

Table 6-4, Detailed Descriptions and Examples of Advanced IPI Instructions
(Continued)

OTI Syntax Valid Elements

Output until input
instruction. The specified
output is pulsed for 30 sec,
or until the corresponding
input is energized. The
output can be a Y value.
NOTE: The input number

may be different
from the output
number. In this
case, you must use
OTI within the same
node. An LD or LDI
command must be
programmed
directly before the
OTI in order to
specify the input bit.
Additionally, the
qualifying LD or LDI
must be an
expression using
physical input bits.

The specified input bit is the
same node location as the
specified output on the
corresponding input port.

Load input with either LD or
LDI. LD is for a positive
trigger and LDI is for a
negative trigger. Follow
immediately (or before
another Load instruction)
with the OTI statement.

OTI is terminated when
E-STOP is pressed.

See also SOTI (Super OTI)
and COTI (cancels OTI or
SOTI).

LD Xn:b

OTI Yn:b

– or –

LDI Xn:b

OTI Yn:b

n = node

b = bit

X registers

Y registers

(Continued…)

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Advanced IPI Instructions

All rights reserved. Subject to change without notice. 6-7
31-October-04

Table 6-4, Detailed Descriptions and Examples of Advanced IPI Instructions
(Continued)

Example Explanation

OTI Example #1

LD X1:3

OTI Y1:0

The Y1:0 output signal is pulsed (goes high) for 30 sec or until
the X1:3 input is detected (goes high). When the X1:3 input is
detected, the Y1:0 signal goes low.

There is a 30 second watchdog (hard coded) for OTI and SOTI
commands. If it times out, OTIFLAG is set to 3.
OTIFLAG (M30) has the following values:

OTIFLAG=0 When an OTI/SOTI command is executed,
 OTIFLAG is set to zero (0) and it remains at zero
 until the command is ended.
OTIFLAG=1 When OTI/SOTI command finish successfully,
 OTIFLAG is set to 1.
OTIFLAG=2 When a COTI command is issued, OTIFLAG is set
 to 2 after OTI/SOTI is cancelled.
OTIFLAG=3 When there is timeout (OTI/SOTI did not complete
 in 30 seconds), OTIFLAG is set to 3.

OTI Example #2

LDI X1:3

OTI Y1:0

The Y1:0 register is pulsed (goes high) for 30 seconds or until
the input X1:3 is detected (goes low).

See OTIFLAG (M30) above.

(Continued…)

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Advanced IPI Instructions

6-8 All rights reserved. Subject to change without notice.
 31-October-04

Table 6-4, Detailed Descriptions and Examples of Advanced IPI Instructions
(Continued)

OWI Syntax Valid Elements

Output When Input. The
specified output is latched
on immediately on input.
Transition must be from
FALSE to TRUE.
NOTE: The input number

may be different
from the output
number. In this
case, you must use
OTI within the same
node.

An LD or LDI command
must be programmed
directly before the OTI in
order to specify the input
bit. Additionally, the
qualifying LD or LDI must
be an expression using
physical input bits.
The specified input bit is the
same node location as the
specified output on the
corresponding input port.
Load input with either LD or
LDI. LD is for a positive
trigger and LDI is for a
negative trigger. Follow
immediately (or before
another Load instruction)
with the OTI statement.

LD Xn:b
OWI Yn:b
– or –
LDI Xn:b
OWI Yn:b

n = node
b = bit

X registers
Y registers

Example Explanation
OWI Example #1
LD X1:2
OWI Y1:5

When the X1:2 input transitions from low to high, the Y1:5 output
will set high. The output will remain high until cleared by another
instruction (such as RES or MOV 0). If the starting input state of
X1:2 is high, the output will not set until the input first goes low
and then a low to high transition is detected.

OWI Example #2
LDI X1:2
OWI Y1:5

When the X1:2 input transitions from high to low, the Y1:5 output
will set high. The output will remain high until cleared by another
instruction (such as RES or MOV 0). If the starting input state of
X1:2 is low, the output will not set until the input first goes high
and then a high to low transition is detected.

(Continued…)

Integral Programmable Intelligence User’s Guide
P/N 70000416D − Advanced IPI Instructions

All rights reserved. Subject to change without notice. 6-9
31-October-04

Table 6-4, Detailed Descriptions and Examples of Advanced IPI Instructions
(Continued)

SOTI Syntax Valid Elements

Super OTI works like OTI
but the number of input
pulses required to turn the
output off can be specified
(instead of it being hard-
coded to 1 as in OTI).
The specified output is
pulsed for 30 sec, or until
the corresponding input is
energized. The output can
be a Y value.
NOTE: The input number

may be different
from the output
number. In this
case, you must use
SOTI within the
same node. An LD
or LDI command
must be
programmed
directly before the
SOTI in order to
specify the input bit.
Additionally, the
qualifying LD or LDI
must be an
expression using
physical input bits.

The specified input bit is the
same node location as the
specified output on the
corresponding input port.

Load input with either LD or
LDI. LD is for a positive
trigger and LDI is for a
negative trigger. Follow
immediately (or before
another Load instruction)
with the SOTI statement.

SOTI is terminated when
E-STOP is pressed.

LD Xn:b

SOTI Yn:b counter

– or –

LDI Xn:b

SOTI Yn:b counter

n = node

b = bit

X registers

Y registers

(Continued…)

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D − Advanced IPI Instructions

6-10 All rights reserved. Subject to change without notice.
 31-October-04

Table 6-4, Detailed Descriptions and Examples of Advanced IPI Instructions
(Continued)

Example Explanation

SOTI Example #1

LD X1:3

SOTI Y1:0 M40

The Y1:0 input will stay ON until the number of pulses specified
in M40 is received. As the pulses are received, SOTICNT (M31)
increments. When SOTICNT=M40, then the output is turned
OFF.

There is a 30 second watchdog (hard coded) for OTI and SOTI
commands. If it times out, OTIFLAG is set to 3.
OTIFLAG has the following values:
OTIFLAG=0 When an OTI/SOTI command is executed,
 OTIFLAG is set to zero (0) and it remains at zero
 until the command is ended.
OTIFLAG=1 When OTI/SOTI command finish successfully,
 OTIFLAG is set to 1.
OTIFLAG=2 When a COTI command is issued, OTIFLAG is set
 to 2 after OTI/SOTI is cancelled.
OTIFLAG=3 When there is timeout (OTI/SOTI did not complete
 in 30 seconds), OTIFLAG is set to 3.

SOTI also keeps track of input pulses/count internally using
SOTICNT.

SOTI Example #2

LDI X1:3

SOTI Y1:0 M70

The Y1:0 register (goes high) until the input X1:3 is detected the
number of times corresponding to the value in M70 before the
output Y1:0 signal goes low.

See OTIFLAG (M30) and SOTICNT (M31) above.

COTI Syntax Valid Elements

Cancel OTI instruction
cancels OTI or SOTI
command immediately.
OTIFLAG is to set to 2 and
SOTICNT stays at the
count number at the
moment of cancellation.

COTI [No parameters
needed, current
register must be TRUE.]

Example Explanation

COTI Example #1

COTI

See “Section 7, Program 5 – IPI Example.”

Integral Programmable Intelligence User’s Guide
P/N 70000416D – Programming Tips and Examples

All rights reserved. Subject to change without notice. 7-1
31-October-04

Section 7 - Programming Tips and Examples

Compiler Directives

A compiler directive is an instruction to the compiler that is not compiled
as part of the IPI program. A compiler directive produces no binary
code for the IPI interpreter. Directives are indicated by a pound sign (#)
as the first character of the line, followed by the required directive.

DEFINE

Format: #DEFINE [label name] [label meaning]

The #DEFINE directive is used to define a label. To define a label, use
the DEFINE directive, name the label and specify the meaning of the
label, in that order. (For example: #DEFINE XP_LIMIT X0:8.)

The label in this example defines the label “XP_LIMIT” and ties the label
to input X0:8. XP_LIMIT is the X-axis positive vector limit. After the
label is defined, any time the compiler encounters the program string
XP_LIMIT, and it will replace the text with X0:8.

In future references, the X positive vector limit switch can be referenced
as XP_LIMIT or X0:8.

LIST

Format: #LIST

The LIST directive instructs the compiler to generate a file listing output.
When the compiler encounters this directive for the first time, and the
list mode is not on, the compiler recompiles with List Mode activated. It
is recommended that the programmer place the LIST directive close to
the beginning of the source file. The result is program name first.

MAXSIZE

Format: #MAXSIZE [nnnn]

Instructs the compiler to generate an error if the actual number of bytes
generated by the instructions exceeds that of the number specified in
the MAXSIZE directive. This is to assist the programmer when program
space is limited. Maxsize refers to the total number of bytes generated
by the IPI instructions.

MAXSTEPS

Format: #MAXSTEPS [nnnn]

The MAXSTEPS directive instructs the compiler to generate an error if
the actual number of compiled instructions exceeds that of the number
specified in the MAXSTEPS directive. This is supplied to assist the
programmer in time-critical applications.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D – Programming Tips and Examples

7-2 All rights reserved. Subject to change without notice.

 31-October-04

RANGE

Format: #RANGE [Element] [starting value] [ending value]

The range directive defines a numeric range for a specified element.
This is supplied to reduce errors due to hardware limitations.

For example: The I/O Board has sixteen inputs. The programmer wants
to avoid calling an input higher than fifteen. The corresponding range
directive would be:

#RANGE X 0 15, where

X is the element (input)

0 is the range minimum

15 is the range maximum

The CNC would flag any X numbers outside the defined range.

SYNTAX

Format: #SYNTAX

The syntax directive instructs the compiler not to produce an output file,
but to check syntax only. If the syntax directive is used, it must appear
before the first statement that produces output.

Plan the Program

Before you begin to create an IPI program, plan the task carefully.
Define all tasks that the IPI will be required to perform, including specific
inputs and outputs. After the particulars are defined, you can formulate
methods to achieve the required tasks.

In the planning phase, ladder diagrams are a good way to visualize
circuits. When you create a ladder diagram, keep each circuit as simple
as possible. Simple circuits are easy to understand and troubleshoot.
When you convert the diagram to IPI code, use as few instructions as
possible. This will help the IPI program to execute as efficiently as
possible.

Integral Programmable Intelligence User’s Guide
P/N 70000416D – Programming Tips and Examples

All rights reserved. Subject to change without notice. 7-3
31-October-04

Using Labels

Use labels to identify specific inputs, outputs, internal elements, delay
times, elements, and other constants. You can also use labels to
rename instructions. Labels cannot be used to rename a compiler
directive.

Always define the label first. The #DEFINE compiler directive provides
the best method by which to define the label. A table of predefined
labels exists. You cannot redefine these labels. Always rename an IPI
instruction when you use a label. If an IPI instruction is used as a label,
that instruction will no longer operate.

Labels can be used to define other labels. For example, if the
programmer defines DELAY as 0.1 and TIMER as TON5, the label
DELAYTIMER can be defined as TIMER DELAY. The compiler will
translate the two labels, and then define DELAYTIMER as TON5 0.1.

NOTE: Embedded spaces are not allowed in the label itself, but are
allowed in the label translation.

Using Conditional Execution

You can use conditional execution to alter the programmed circuit
based on logical conditions. However, extra care must be taken when
you use the CTL instruction inside a conditional execution. Refer to
Table 7-1.

Table 7-1, Conditional Execution within Conditional Statements
Block Function

IF 2 IF block beginning conditional statement.

 |

CTL M20 When the IF block executes, control M20 is
executed, but there is no control return inside the IF
block. After the IF block executes, the control M20
will still be in effect. If the condition for the IF block is
FALSE, the control M20 will not be executed, and
therefore will never take effect.

 |

EDF EDF closing conditional statement.

ANILAM recommends that the conditional blocks be self-contained
blocks of code. All controls should have control returns inside the IF
block.

Using Sequence States

Sequence States can be used to create a stepladder effect on the IPI
program. Only one state can be active at a time. When a Sequence
State is set to true, all other states are set to false.

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D – Programming Tips and Examples

7-4 All rights reserved. Subject to change without notice.

 31-October-04

Programming Examples

This section includes several IPI program examples that include most of
the operands described in the preceding sections. Refer to Table 4-5,
Summary of IPI Operands, for a summary of available IPI operation
codes. Refer to Table 4-6, Detailed Descriptions and Examples of
Operands, for detailed explanations and examples of each operation
code.

Program 1 – Basic IPI Example

The following is a complete basic IPI program.

*BASIC IPI PROGRAM

*M0 THRU M63 SYSTEM REGISTERS
*M224 THRU M239 IPI AND CNC SHARED REGISTERS
*M240 THRU M255 NON-VOLATILE REGISTERS

#DEFINE FINWAIT M64 *COMPILER ASSIGNS LABEL FINWAIT TO M64
#DEFINE MFTN2 M65 *COMPILER ASSIGNS LABEL MFTN2 TO M65
#DEFINE MFTN3 M66 *COMPILER ASSIGNS LABEL MFTN3 TO M66
#DEFINE MFTN4 M67 *COMPILER ASSIGNS LABEL MFTN4 TO M67
#DEFINE MFTN5 M68 *COMPILER ASSIGNS LABEL MFTN5 TO M68
#DEFINE MFTN8 M69 *COMPILER ASSIGNS LABEL MFTN8 TO M69
#DEFINE MFTN9 M70 *COMPILER ASSIGNS LABEL MFTN9 TO M70
#DEFINE MFTN30 M71 *COMPILER ASSIGNS LABEL MFTN30 TO M71

START *DEFINES REPEATING PORTION OF PROGRAM

*FINISH PULSE GENERATION

LD (MFLAG OR SFLAG)
OR (TFLAG OR HFLAG)
SET FINISH *SETS FINISH HIGH ON ANY FLAG

LDI FINWAIT *SET FINWAIT HIGH DURING OPERATIONS THAT
 *REQUIRE PROGRAM HOLD TILL COMPLETE
AND FINISH *LOOK FOR FINISH AND WITH FINWAIT LOW
OUT TON0 0.1 *0.1 SEC FINISH PULSE DURATION

IF 0 T0 *IF #0 LOOKS FOR TO ACTIVE
RES FINISH *RESETS FINISH AFTER FINISH TIMER T0

Integral Programmable Intelligence User’s Guide
P/N 70000416D – Programming Tips and Examples

All rights reserved. Subject to change without notice. 7-5
31-October-04

EDF 0 *END IF #0

*BASIC M-FUNCTIONS: SPINDLE FORWARD, REVERSE, OFF; COOLANT ON AND OFF;
*PROGRAM END, SUBROUTINE END.

*THESE MULTIFUNCTION REGISTERS ARE VISABLE IN THE DEFAULT IPI MONITOR
*DISPLAY. USE THESE REGISTERS TO SET I/O BOARD OUTPUTS AS REQUIRED.

LD (MCODE EQ 2) *SET MFTN2 FOR PROGRAM END: REGISTER M64
OUT MFTN2

LD (MCODE EQ 3) *SET MFTN3 FOR SPINDLE FWD: REGISTER M65
OR MFTN3 *LATCH ON
ANI MFTN5 *DISABLE ON M5
ANI (MFTN2 OR MFTN30) *DISABLE ON M2 OR M30
RES MFTN4 *RESET M4: ALLOWS DIRECT DIRECTION CHANGE
OUT MFTN3 *USE TO SET OUTPUT FOR SPINDLE FORWARD

LD (MCODE EQ 4) *SET MFTN4 FOR SPINDLE REV: REGISTER M66
OR MFTN4 *LATCH ON
ANI MFTN5 *DISABLE ON M5
ANI (MFTN2 OR MFTN30) *DISABLE ON M2 OR M30
RES MFTN3 *RESET M3: ALLOWS DIRECT DIRECTION CHANGE
OUT MFTN4 *USE TO SET OUTPUT FOR SPINDLE REVERSE

LD (MCODE EQ 5) *SET MFTN5 FOR SPINDLE STOP: REGISTER M68
OUT MFTN5

LD (MCODE EQ 8) *SET MFTN8 FOR COOLANT ON: REGISTER M69
OR MFTN8 *LATCH ON
ANI MFTN9 *DISABLE ON M9
ANI (MFTN2 OR MFTN30) *DISABLE ON M2 OR M30
OUT MFTN8

LD (MCODE EQ 9) *SET MFTN9 FOR COOLANT OFF: REGISTER M70
OUT MFTN9

LD (MCODE EQ 30) *SET MFTN30 FOR SUBPGM END: REGISTER M71
OUT MFTN30

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D – Programming Tips and Examples

7-6 All rights reserved. Subject to change without notice.

 31-October-04

* 0.5 SECOND BLINKER

LDI T2 *USE FOR WARNING LIGHTS, ETC.
OUT T2 0.5

*SETS IPI MONITOR TO DISPLAY SELECTED REGISTER RANGES

IF 1 (HCODE EQ 1) *DISPLAY REGISTERS M0-M15 (SYSTEM)
MOV 1 MREGRAN
EDF 1
IF 2 (HCODE EQ 2) *DISPLAY REGISTERS M16-M31 (SYSTEM)
MOV 2H MREGRAN
EDF 2
IF 3 (HCODE EQ 3) *DISPLAY REGISTERS M32-M47 (SYSTEM)
MOV 4H MREGRAN
EDF 3
IF 4 (HCODE EQ 4) *DISPLAY REGISTERS M48-M63 (SYSTEM)
MOV 8H MREGRAN
EDF 4
IF 5 (HCODE EQ 5) *DISPLAY REGISTERS M64-M79 (DEFAULT DISPLAY)
MOV 10H MREGRAN
EDF 5
IF 6 (HCODE EQ 6) *DISPLAY REGISTERS M80-M95
MOV 20H MREGRAN
EDF 6
IF 7 (HCODE EQ 7) *DISPLAY REGISTERS M96-M111
MOV 40H MREGRAN
EDF 7
IF 8 (HCODE EQ 8) *DISPLAY REGISTERS M112-M127
MOV 80H MREGRAN
EDF 8
IF 9 (HCODE EQ 9) *DISPLAY REGISTERS M128-M143
MOV 100H MREGRAN
EDF 9
IF 10 (HCODE EQ 10) *DISPLAY REGISTERS M144-M159
MOV 200H MREGRAN
EDF 10
IF 11 (HCODE EQ 11) *DISPLAY REGISTERS M160-M175
MOV 400H MREGRAN
EDF 11
IF 12 (HCODE EQ 12) *DISPLAY REGISTERS M176-M191

Integral Programmable Intelligence User’s Guide
P/N 70000416D – Programming Tips and Examples

All rights reserved. Subject to change without notice. 7-7
31-October-04

MOV 800H MREGRAN
EDF 12
IF 13 (HCODE EQ 13) *DISPLAY REGISTERS M192-M207
MOV 1000H MREGRAN
EDF 13
IF 14 (HCODE EQ 14) *DISPLAY REGISTERS M208-M223
MOV 2000H MREGRAN
EDF 14
IF 15 (HCODE EQ 15) *DISPLAY REGISTERS M224-M239 (IPI & CNC SHARE)
MOV 4000H MREGRAN
EDF 15
IF 16 (HCODE EQ 16) *DISPLAY REGISTERS M240-M255 (NON-VOLATILE)
MOV 8000H MREGRAN
EDF 16

END

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D – Programming Tips and Examples

7-8 All rights reserved. Subject to change without notice.

 31-October-04

Program 2 – Binary Encoder Example

The following program will read a decimal number from a register,
DECIMAL, and set a four-digit binary output accordingly. If the number
is greater than 15 a flag, TOOBIG, will be set and no output will occur.

*BINARY ENCODER EXAMPLE

#DEFINE DECIMAL M100
#DEFINE TEMP1 M101
#DEFINE TEMP2 M102
#DEFINE TOOBIG M103
#DEFINE ENABLE M104

#DEFINE 8BIT Y0:3
#DEFINE 4BIT Y0:2
#DEFINE 2BIT Y0:1
#DEFINE 1BIT Y0:0

START

IF 0 (DECIMAL GT 15) *SET TOOBIG FLAG IF GREATER THAN 15
SET TOOBIG
RES ENABLE
ELS 0
SET ENABLE *ENABLE PROCESS IF OK
RES TOOBIG
EDF 0

IF 1 ENABLE *DECIMAL NOT GREATER THAN 15

IF 2 (DECIMAL NE TEMP1) *DECIMAL HAS NOT CHANGED, NO CHANGE
 *REQUIRED

MOV DECIMAL TEMP1 *STORE TEMP VALUE TO DETERMINE IF
 *OUTPUT CHANGE REQUIRED

IF 3 (TEMP1 EQ 0) *IF TEMP1 IS 0, RESET ALL OUTPUTS
RES 8BIT
RES 4BIT
RES 2BIT
RES 1BIT

Integral Programmable Intelligence User’s Guide
P/N 70000416D – Programming Tips and Examples

All rights reserved. Subject to change without notice. 7-9
31-October-04

ELS 3 *OTHERWISE CONVERT AND OUTPUT BITS
MOV TEMP1 TEMP2 *TEMP2 WORKING REGISTER TO OUTPUT BITS

IF 4 (TEMP2 GT 0) *TEMP2 WILL BE 0 WHEN FULLY DECODED

IF 5 (TEMP2 GE 8) *CAN YOU SUBTRACT 8 FROM DECIMAL?
SET 8BIT *IF SO SET 8BIT
MOV (TEMP2 - 8) TEMP2 *THEN SUBTRACT 8 FROM DECIMAL
ELS 5
RES 8BIT *IF NOT RESET 8BIT
EDF 5

IF 6 (TEMP2 GE 4) *CAN YOU SUBTRACT 4 FROM DECIMAL?
SET 4BIT *IF SO SET 4BIT
MOV (TEMP2 - 4) TEMP2 *THEN SUBTRACT 4 FROM DECIMAL
ELS 6
RES 4BIT *IF NOT RESET 4BIT
EDF 6

IF 7 (TEMP2 GE 2) *CAN YOU SUBTRACT 2 FROM DECIMAL?
SET 2BIT *IF SO SET 2BIT
MOV (TEMP2 -2) TEMP2 *THEN SUBTRACT 2 FROM DECIMAL
ELS 7
RES 2BIT *IF NOT RESET 2BIT
EDF 7

IF 8 (TEMP2 GE 1) *CAN YOU SUBTRACT 1 FROM DECIMAL?
SET 1BIT *IF SO SET 1BIT
MOV (TEMP2 - 1) TEMP2 *THEN SUBTRACT 1 FROM DECIMAL
ELS 8
RES 1BIT *IF NOT RESET 1BIT
EDF 8

EDF 4 *END TEMP2 NOT ZERO LOOP
EDF 3 *END SET OUTPUT BITS LOOP
EDF 2 *END DECIMAL HAS CHANGED LOOP
EDF 1 *END ENABLE LOOP

END

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D – Programming Tips and Examples

7-10 All rights reserved. Subject to change without notice.

 31-October-04

Program 3 – Binary Decoder Example

The following program reads a binary encoder for tool position and places the tool position’s
decimal value into register M81 (TOOLACT).
*BINARY DECODER EXAMPLE

#DEFINE BITREG8 M84
#DEFINE BITREG4 M85
#DEFINE BITREG2 M86
#DEFINE BITREG1 M87
#DEFINE BITREG84 M88
#DEFINE BITREG21 M89

#DEFINE BIT1 XIN1
#DEFINE BIT2 XIN2
#DEFINE BIT4 XIN3
#DEFINE BIT8 XIN4

START
*LOADS BITS TO REGISTERS FOR COMPARISON

IF 103 BIT1 *CONVERTS BIT 1 TO REGISTER
MOV 1 BITREG1
ELS 103
MOV 0 BITREG1
EDF 103

IF 104 BIT2 *CONVERTS BIT 2 TO REGISTER
MOV 2 BITREG2
ELS 104
MOV 0 BITREG2
EDF 104

IF 105 BIT4 *CONVERTS BIT 4 TO REGISTER
MOV 4 BITREG4
ELS 105
MOV 0 BITREG4
EDF 105

IF 106 BIT8 *CONVERTS BIT 8 TO REGISTER
MOV 8 BITREG8
ELS 106

Integral Programmable Intelligence User’s Guide
P/N 70000416D – Programming Tips and Examples

All rights reserved. Subject to change without notice. 7-11
31-October-04

MOV 0 BITREG8
EDF 106

MOV (BITREG1 + BITREG2) BITREG21
MOV (BITREG4 + BITREG8) BITREG84
MOV (BITREG84 + BITREG21) TOOLACT

END

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D – Programming Tips and Examples

7-12 All rights reserved. Subject to change without notice.

 31-October-04

Program 4 – Single-Shot Pulse/Simple Counters Example

The following program creates a single-shot output, true during only one
IPI cycle. This can be used to de-bounce switch inputs, and allows the
creation of counters when used with mathematical statements or the
INC/DEC instructions.

*SINGLE-SHOT PULSE/SIMPLE COUNTERS EXAMPLE

#DEFINE EVENT X0:0
#DEFINE LOCK M100
#DEFINE EVENTOUT M101
#DEFINE COUNTER M102

LD EVENT
ANI LOCK
OUT EVENTOUT
MOV EVENT LOCK

If the resulting output, EVENTOUT, is then used as an input:

IF 100 EVENTOUT
INC COUNTER
EDF 100

END

A simple increment counter is created. Multifunction registers can count
from 0 to 65535. Underflow (negative counting) is not permitted.

Integral Programmable Intelligence User’s Guide
P/N 70000416D – Programming Tips and Examples

All rights reserved. Subject to change without notice. 7-13
31-October-04

Program 5 – IPI Example

This program section deals with rotation of magazine, TLSTEP 2 sets
magazine rotation controlled by SOTI. TLSTEP 4 checks that
SOTICNT (M31) equals TOOLDIFF, which means magazine rotated
desired number of times, and that OTIFLAG (M30) indicates that SOTI
command ended properly. More detailed error checking can be added.

*IPI EXAMPLE

#DEFINE TOODIF M155 * DIFF. IN TOOLREQ & ACTUAL TOOL
#DEFINE TREV M157 * REVERSE DIRECTION
#DEFINE TLSTEP M159 * TOOL CHANGE CONTROL STEP
#DEFINE MAG_ROT_B M162 * MAGAZINE IN ROTATION BIT

#DEFINE MAG_CW_RL Y0:5 * CAROUSEL CW RELAY
#DEFINE MAG_CCW_RL Y0:6 * CAROUSEL CCW RELAY

#DEFINE TL_CNT_SW X0:23 * MAGAZINE COUNTING SWITCH

*** TLSTEP 2: ROTATE magazine CW/CCW to Target Tool ***

IF 73 (TLSTEP EQ 2)
 IFI 730 TREV * Check Magazine Rotation direction
 LD TL_CNT_SW * Forward Magazine Rotation (SOTI)
 SOTI MAG_CW_RL TOOLDIF
 EDF 730
 IF 731 TREV * Check Magazine Rotation direction
 LD TL_CNT_SW * Reverse Magazine Rotation (SOTI)
 EDF 730
 MOV 4 TLSTEP * Next Tool Change step
EDF 73

*** TLSTEP 4 FINAL CHECK FOR MAG ROTATION ***

LD (OTIFLAG EQ 1) * Check if SOTI ended successfully
AND (TLSTEP EQ 4) * Check for Final Stage
AND (TOOLDIF EQ SOTICNT) * Check if Rotated Correct Number
IF 80
 LDI MAG_CW_RL * Check that Rotation Stop
 ANI MAG_CCW_RL

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D – Programming Tips and Examples

7-14 All rights reserved. Subject to change without notice.

 31-October-04

 AND TL_CNT_SW * Check Proximity switch, STOP CORRECTLY
 IF 81
 MOV 0 TLSTEP * End Tool Change Sequence
 MOV TOOLREQ M226 * TOOL POT NO REQ TO 1102
 MOV TOOLREQ TL_POT_NO
 RES MAG_ROT_B * MAG ROT FINISH OK

 EDF 81
EDF 80

Integral Programmable Intelligence User’s Guide
P/N 70000416D - Index

All rights reserved. Subject to change without notice. Index-1
31-October-04

#DEFINE, 7-1
#LIST, 7-1
#MAXSIZE, 7-1
#MAXSTEPS, 7-1
#RANGE, 7-2
#SYNTAX, 7-2
*.DBI instructions, 4-6
*.DBO files, 4-6
24 V common, 2-16

A
accessing, select options menu,

3-3
activating, the editor, 3-6
active interface type, 3-1
active register, 6-1
add expressions, 4-3
advanced, IPI instructions

description, 6-1
descriptions and examples, table, 6-5

ANB, 4-10, 4-27
AND, 4-4, 4-9, 4-17, 4-18
ANI, 4-4, 4-9, 4-18, 4-19, 4-20
assigned

read only multifunction registers, table,
2-5

read/write multifunction registers, table,
2-6

ATSPD, M29, 2-6
AUTOINH, M56, 2-7, 2-12
available, multifunction register

ranges, displayed IPI monitor,
2-9

B
basic IPI program, example, 7-4
binary

decoder, example, 7-10
encoder, example, 7-8
output files, 3-2
values, 4-5

block number, follows IF
command, 6-1

block numbers, 6-4
Boolean

logic, 4-9, 4-10
operations, 4-3
registers, 2-4
true/false states, 2-5, 4-5

building, IPI program
instructions, 4-3

byte values, 4-5

C
CAN bus I/O system, 1-1
CAN I/O board, description, 2-1
CAN node

CAN I/O board, 2-1
input location, 2-2
output tyoe, table, 2-3
output, location, 2-3

cancel
OTI, use COTI, 6-10
SOTI, use COTI, 6-10

cancel OTI or SOTI, COTI, 4-12
carry flag, 2-5
CARRY, M8, 2-5
changing, the range of displayed

registers, 2-9
checksum error, 2-10
closed-loop mode, 2-5
CLP, 4-11, 6-1, 6-4
CLP statement block, 6-4
CLP/EJP, 4-11
CMDRPM, M54, 2-7, 2-12
CNC

flags, 4-7
flags, illustration, 2-19
hold/resume motion, 2-6
inputs to the IPI, 2-5
keys: Start, Hold, Spindle CW, Spindle

CCW, Spindle OFF, 2-10
program block, 2-14
software, description, 2-1

CNCERR, M44, 2-7, 2-10
coil, 4-8
command

delayed off, 5-2
delayed on, 5-2
delayed on/off, 5-2
EDF, 6-1
ELSE, 6-1
IF, 6-1
MOV, 5-2
T, 5-5
timer delayed on then off, 5-5
TOFF, 5-4
TON, 5-5

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D - Index

Index-2 All rights reserved. Subject to change without notice.
 31-October-04

commanded spindle RPM, 2-7
Commanded Spindle RPM, 2-12
comments from *.DBO files, 4-6
comments, using, 4-6
comparison operations, 2-4, 4-3
compiler

directives, 7-1
error file, 3-2
list file, 3-2
to activate, 3-6

compiling, an IPI program, 3-6
conditional

execution, within conditional statements,
7-3

instructions, table, 6-1
jump instruction set, 6-4
jump programming, examples, 6-4
jumps, description, 6-4
logic, defined, 1-1
statement programming, examples, 6-2
statement sets, 6-2, 6-4
statements, table, 4-11

configuring, IPI setup, 3-1
constants, 4-16
contact, 4-8
control M20, 7-3
Copy key, 3-7
Copy? key, 3-7
COTI (cancel OTI or SOTI, 4-12
COTI, cancel OTI or SOTI, 6-10
countdown timer, 4-10, 5-4
countdown value, 2-15
counting operations, 2-4
counting register, 5-1
creating, a new IPI program, 3-3
creating, additional I/O labels,

4-6
CTL, 7-3
CTL instruction, inside a

conditional execution, 7-3
CTL/CTR, 4-10, 4-33
current register, value, 4-3
current register, value or state,

4-1

D
DBI files, 3-2
DBO files, 3-2, 3-3
DEC, 4-10, 4-35
DEC instruction, 7-12

decimal values, 4-5
DEFINE directive, 7-1, 7-3
delayed

off, 5-1, 5-2
on, 5-1, 5-2
on then off, 5-1
on/off, 5-2

DELAYTIMER, 7-3
Delete key, 3-7
descriptions and examples, of

operands, 4-13
designated timer, 4-10
digital inputs, 2-1
digital outputs, 2-1
direction, of spindle rotation,

2-11
directive

DEFINE, 7-1, 7-3
LIST, 7-1
MAXSIZE, 7-1
MAXSTEPS, 7-1
RANGE, 7-2
SYNTAX, 7-2

disclaimer, iii
Display key, 3-7
displaying, more than one range,

2-9

E
EDF, 4-11, 6-1, 6-2, 6-3, 7-3
EDF, command, 6-1
Edit key, 3-7
edit, an existing program, 3-5
editor, activating, 3-6
EJP, 4-11, 6-1, 6-4
element names, 4-3
ELS, 4-11, 6-1, 6-2, 6-3, 6-4
ELSE, command, 6-1
embedded spaces, in label

translation, 7-3
enable

AUTO mode, 2-7
S.Step mode, 2-7

END instruction, 4-2
EQ, 4-4
ERR files, 3-2
error

conditions, to IPI, 2-7, 2-10
file, view, 3-2

Integral Programmable Intelligence User’s Guide
P/N 70000416D - Index

All rights reserved. Subject to change without notice. Index-3
31-October-04

M44-CNCERR, condition values, table,
2-10

messages, loader, 3-2
errors, compiler, 3-6
errors, ERR files, 3-2
ESTOP, M6, 2-5
examples

basic IPI program, 7-4
binary encoder, 7-10
binary encoder, 7-8
programming, 7-1, 7-4
single-shot pulse/simple counters, 7-12

executable *.DBI instructions,
4-6

existing program, selecting, 3-5
expansion board, 2-16
expression operands, 4-4
expressions, 4-13, 4-15, 4-16,

4-17, 4-18, 4-20, 4-23, 4-27,
4-29

external start, 2-8
External Start, 2-12

F
FALSE, M10, 2-5
Feed 100% Override, 2-12
feed mode flag, 2-5
feed moves, 2-6
FEED, M4, 2-5
FEED100, M57, 2-8, 2-12
feedrate override, 2-8
feedrate override switch, 2-11
FHOLD, M35, 2-6
file read error, 2-10
file write error, 2-10
filename, extension, 3-3
FINISH flag, 4-7
finish signal generation, 4-7
FINISH, M33, 2-6
FPM mode, 2-12
FPM, defined, 2-11

G
GE, 4-4
gear range, 2-7, 2-10, 2-11
general purpose

input, locations, 2-2
inputs, input type, 2-2
multifunction registers, 2-14
outputs, 2-3
registers, current, 4-1

registers, previous, 4-1
GT, 4-4

H
handwheel, stop, 2-12
H-code number, 2-6
HCODE, M24, 2-6
hex values, 4-5
HFLAG, M23, 2-6
home limits, input locations, 2-2
HOME, M13, 2-5
HOMING, M50, 2-7, 2-11
HWSTOP, M55, 2-7, 2-12

I
I/O boards, description, 2-16
IF, 4-11, 6-1, 6-2, 6-4, 7-3
IF, command, 6-1
IF/ELS/EDF, 4-11
IFI, 6-2, 6-3
INC, 4-10, 4-35
INC instruction, 7-12
increment counter, 7-12
inhibit

AUTO mode, 2-7, 2-12
handwheel operation, 2-7
S.Step mode, 2-7

initialization instructions, 2-4
input

format, 2-2
locations, table, 2-2
registers, 2-4
registers, store state values, 2-17
type, descriptions, table, 2-2
X identifiers, 2-4

inputs, description, 2-2
inputs, I/O board, 2-1
instruction operands, 4-3
instruction sets, 6-1
instructions

DEC, 7-12
INC, 7-12
that use the previous state register, 4-8
that use timers, 4-8

integral programmable
intelligence (IPI), description,
1-1

interface type, 3-1
internal, timers, 2-4
interpreter, 2-4

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D - Index

Index-4 All rights reserved. Subject to change without notice.
 31-October-04

interpreter operation, illustration,
4-1

INV, 4-11, 4-25
Inverse IF, 6-2
IPI

advanced instructions, descriptions and
examples, table, 6-5

basic program, example, 7-4
configuring, setup, 3-1
cycle, description, 2-4
editor, 3-2
editor, using, 3-3
executable, 3-2
file management, soft keys, table, 3-7
file names, 3-2
finish flag, 4-7
flags, 4-2
flags, illustration, 2-20
instruction, used as a label, 7-3
instructions, advanced, 6-1
integral programmable intelligence,

description, 1-1
interpreter, 4-1, 6-1
monitor

description, 2-17
multifunction register ranges, displayed,

2-9
screen, 2-17
screen, 3000M, illustation, 2-18
screen, 4200T & 5000M, illustration,

2-17
viewing, 2-17

M-registers, 2-14
new program, creating, 3-3
operation

codes, 4-9
codes, summary, 7-4
set, 4-8

program
command, 2-14
examples, description, 7-4
instructions, 4-3, 4-8
writing, 4-1

program file, 3-2
programming, 3-2
programming, planning, 7-2
setup menus, illustration, 3-1

IPIMREGS.DAT file, 2-15

J
jump, conditional, 6-4

K
key codes, 4-11
KEYMASK, M46, 2-7, 2-10
KEYMASK, M46, bit numbers

and keys, table, 2-10

L
label names, 4-6
label, embedded spaces, 7-3
label, translation, 7-3
labels

additional I/O, creating, 4-6
to rename a compiler directive, 7-3
to rename instructions, 7-3
used to define other labels, 7-3

ladder diagram, 7-2
ladder diagram symbols, 4-8
LD, 4-9, 4-11, 4-12, 4-13, 4-14
LDI, 4-9, 4-11, 4-12, 4-15
LE, 4-4
leading tabs and spaces, in

operation codes, 4-3
linear axis, feed limit, 2-7, 2-11
LIST directive, 7-1
List key, 3-7
LNFDLIM, M51, 2-7, 2-11
load input, 4-11
Load key, 3-7
loading an IPI program, 3-6
LST files, 3-2
LT, 4-4

M
M code, 2-6
M designator, 2-5
M registers, 2-18, 4-13, 4-14,

4-15, 4-16, 4-17, 4-18, 4-20,
4-23, 4-27, 4-29, 4-31, 4-32,
4-33, 4-35, 5-3, 6-2, 6-4, 6-5

M, S, T, and H codes from the
CNC, 2-18

M, S, T, or H code to finish
signal, 4-7

M, S, T, or H finish, 2-6
M0, SPINDLE, 2-5
M1, POSN, 2-5
M10, FALSE, 2-5

Integral Programmable Intelligence User’s Guide
P/N 70000416D - Index

All rights reserved. Subject to change without notice. Index-5
31-October-04

M11, not used, register, 2-5
M12, TCFINACK, 2-5
M13, HOME, 2-5
M14, SPLOOP, 2-5
M15, RUN, 2-5
M16, MAN, 2-6
M17, MFLAG, 2-6
M18, MCODE, 2-6
M19, SFLAG, 2-6
M19END, M62, 2-8
M19FLAG, M61, 2-8
M2, PRBFLAG, 2-5, 2-8
M20, SCODE, 2-6
M21, TFLAG, 2-6
M22, TCODE, 2-6
M23, HFLAG, 2-6
M24, HCODE, 2-6
M25, reserved (M designator),

2-6
M26, TMACEND, 2-6
M27, ZMACHPOS), 2-6
M28, ZEROSPD), 2-6
M29, ATSPD), 2-6
M3, PWRFAIL, 2-5
M30, OTIFLAG, 6-7, 6-10
M30–M31, reserved, 2-6
M31, SOTICNT, 6-10
M32, XMIT, 2-6
M33, FINISH, 2-6
M34, SVOFLT, 2-6
M35, FHOLD, 2-6
M36, TCHGFIN, 2-6
M37, XSTOP, M37, 2-6
M38, XHOLD, 2-6
M39, MSG, 2-7
M4, FEED, 2-5
M40, reserved (M designator),

2-7
M41, SPDAN0V, 2-7, 2-8
M42, MREGRAN, 2-7, 2-9
M43, SPDGRCH, 2-7, 2-10, 2-11
M44, CNCERR, 2-7, 2-10
M45, not used, 2-7
M46, KEYMASK, 2-7, 2-10
M47, SPIN100, 2-7, 2-11
M48, SPDRPM, 2-7, 2-11
M49, SPDDIR, 2-7, 2-11
M5, SVOFF, 2-5
M50, HOMING, 2-7, 2-11
M51, LNFDLIM, 2-7, 2-11
M52, ROFDLIM, 2-7, 2-12

M53, SPDVOLT, 2-7, 2-12
M54, CMDRPM, 2-7, 2-12
M55, HWSTOP, 2-7, 2-12
M56, AUTOINH, 2-7, 2-12
M57, FEED100, 2-8, 2-12
M58, XSTART, 2-8, 2-12
M59, TOOLNUM, 2-8
M6, ESTOP, 2-5
M60, TLOBIN0, 2-8
M61, M19FLAG, 2-8
M62, M19END, 2-8
M63, SPRSTOP), 2-8
M7, not used, register, 2-5
M8, CARRY, 2-5
M81, 7-10
M9, TRUE, 2-5
machine status, 3-6
MAN, M16, 2-6
MANUAL mode, 2-6
manual panel, 2-7
Mask key, 3-7
masking out keys, 2-10
masking out, certain keys, 2-7
mathematical operations, 4-3
MAXSIZE directive, 7-1
MAXSTEPS directive, 7-1
MCODE, M18, 2-6
memory registers, 2-4
memory registers, description,

2-4
menus, select options,

illustration, 3-3
MFLAG, M17, 2-6
MOV, 2-9, 4-9, 4-10, 4-16, 5-1,

5-2
MOV statement, 4-31, 4-32
Mreg range, table, 2-9
M-register range, 2-10
M-registers, 2-5
M-registers, shared, table, 2-14
M-registers, static, 2-15
MREGRAN, 2-9
MREGRAN, M42, 2-7, 2-9
MSG, M39, 2-7
multifunction

memory registers, 2-4, 4-5
register, 4-16
registers, 2-7, 2-9, 7-12
registers, description, 2-5
registers, M identifiers, 2-4
registers, store state values, 2-17

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D - Index

Index-6 All rights reserved. Subject to change without notice.
 31-October-04

MVA, 4-9, 6-5

N
NE, 4-4
negative counting, 7-12
negative trigger, 4-11, 6-6, 6-9
nested IFs, 6-1
nested set, 6-2
new

element, value or state, 4-1
file, 2-10
program names, 3-3
tool number, 2-6

NOP, 4-10, 4-35
not used, register

M11, 2-5
M45, 2-7
M7, 2-5

number base indicators, 4-5
numeric

parameters, 4-5
registers, 2-4
values, 2-5, 4-3, 4-5

O
octal values, 4-5
OEM CNC Installation, P/N

70000506, referenced, 2-1
OKBD, 4-11, 6-5
on-screen messages, 2-6
operands, descriptions and

examples, table, 4-13, 5-3
operation

code, OUT, 5-1
codes, 4-3
set, IPI, 4-8

OR, 4-10, 4-20
ORB, 4-10, 4-29
ORI, 4-4, 4-10, 4-23
OTI, 4-11, 6-6
OTI, to cancel, use COTI, 6-10
OTIFLAG, M30, 6-7, 6-10
OUT, 4-9, 4-14, 5-1, 5-2
output

format, 2-3
I/O board, 2-1
keyboard instruction, 4-11, 6-5
memory registers, 2-4
registers, store state values, 2-17
type, descriptions, table, 2-3

until input, 6-6
until input, OTI, 4-11, 6-6
until input, SOTI, 4-12, 6-9
voltage, 2-10
when input, 4-11, 6-8
Y identifiers, 2-4

OWI, 4-11, 6-8

P
P register, numbers and

assigned labels, 2-13
P registers, description, 2-13
P/N 70000506, OEM CNC

Installation, referenced, 2-1
P5 DB-25, connector, 2-2, 2-3
P5, inputs and outputs, table, 2-1
parent set, 6-2
physical input bits, 4-11, 4-12
planning, program, 7-2
PLC flags, 2-10
positive trigger, 4-11, 6-6, 6-9
POSN, M1, 2-5
PRBFLAG, M2, 2-5, 2-8
previous register, value, 4-3
previous register, value or state,

4-1
Print key, 3-7
probing flag, M2, 2-5, 2-8
program

END instruction, 4-2
instructions, 4-3
planning, 7-2
select existing, illustration, 3-5
START instruction, 4-2

programming
examples, 7-1
IPI, 3-2
tips, 7-1

PWRFAIL, M3, 2-5

Q
QWERTY keyboard, 2-17

R
RANGE directive, 7-2
rapid moves, 2-6
RD, 4-9, 5-3
RD instruction, description, 2-15
read multifunction register, 5-4

Integral Programmable Intelligence User’s Guide
P/N 70000416D - Index

All rights reserved. Subject to change without notice. Index-7
31-October-04

read only registers, multifunction,
assigned, table, 2-5

read timer count, 5-3
read/write registers,

multifunction, assigned, table,
2-6

real-time state value, 5-1
referencing, specific elements,

4-6
register

counting, 5-1
state, 5-1

registers
capabilities, table, 2-4
multifunction register ranges, displayed,

2-9
read only multifunction, table, 2-5
read/write multifunction, table, 2-6
sequence, description, 2-15
shared, table, 2-14
timer, description, 2-15

Rename key, 3-7
renaming, operation codes, 4-6
RES, 4-10, 4-32
RES instruction, 4-31
reserved, (M designator)

M25, 2-6
M30–M31, 2-6
M40, 2-7

restart instruction, 4-10, 5-4
Restore key, 3-7
ROFDLIM, M52, 2-7, 2-12
rotary axis, feed limit, 2-7, 2-12
RST, 4-10, 5-4
RUN mode, 2-5
RUN, M15, 2-5

S
S registers, 4-13, 4-14, 4-15,

4-16, 4-17, 4-18, 4-20, 4-23,
4-27, 4-29, 4-33, 5-3, 6-2, 6-4

safety feature
M51, LDFDLIM, 2-11
M52, ROFDLIM, 2-12

SCODE, M20, 2-6
screens

3000M, illustation, 2-18
4200T & 5000M, illustration, 2-17

select options menu, illustration,
3-3

selecting, existing program, 3-5

sequence
memory registers, 2-4
outputs, S identifiers, 2-4
registers, description, 2-15
states, 7-3

servo fault, 2-6
set

nested, 6-2
parent, 6-2

SET, 4-10, 4-31
SET instruction, 4-32
setup parameters, 2-13
SFLAG, M19, 2-6
shared registers, table, 2-14
single-element instructions, 4-8
single-shot pulse/simple

counters, example, 7-12
sink board, 2-1
sink I/O board input and output

principles, illustration, 2-16
soft keys, IPI file management,

table, 3-7
software, description, 2-1
SOTI (super OTI), 4-12, 6-9
SOTI, to cancel, use COTI, 6-10
SOTICNT, M31, 6-10
source board, 2-1
source I/O board input and

output principles, illustration,
2-16

SPDAN0V, M41, 2-7, 2-8
SPDDIR, M49, 2-7, 2-11
SPDDIR, used with SPDVOLT,

for direction selection, 2-12
SPDGRCH, M43, 2-7, 2-10, 2-11
SPDLFWD, 4-6
SPDRPM, M48, 2-7, 2-11
SPDVOLT, M53, 2-7
specifying, delay values, 4-6
SPIN100, M47, 2-7, 2-11
spindle

analog voltage, 2-11
axis setup utilities, 2-11
code, 2-6
control, 2-7
number, 2-6
override switch, 2-11
range errors, 2-12
RPM, commanded, 2-7
voltage, 2-7, 2-12

SPINDLE, M0, 2-5

 Integral Programmable Intelligence User’s Guide
 P/N 70000416D - Index

Index-8 All rights reserved. Subject to change without notice.
 31-October-04

SPLOOP, M14, 2-5
SPRSTOP, M63, 2-8
S-registers, description, 2-15
start button, 2-6
START instruction, 4-2
START instruction, 4-2
state

memory register, 2-2
only register, 2-4
outputs, 4-3
register, 2-15, 5-1
value, 2-17
values, 4-3

static M-registers, description,
2-15

static registers, 2-15
subtract expressions, 4-3
summary of IPI operands, table,

4-9
super OTI, SOTI, 4-12, 6-9
SVOFF, M5, 2-5
SVOFLT, M34, 2-6
S-word, 2-8
SYNTAX directive, 7-2
syntax format, 4-8

T
T registers, 2-18, 4-13, 4-14,

4-15, 4-16, 4-17, 4-18, 4-20,
4-23, 4-27, 4-29, 4-33, 5-3,
5-4, 6-2

T, command, 5-5
TCFINACK, M12, 2-5
TCHGFIN, M36, 2-6
TCODE, M22, 2-6
TFLAG, M21, 2-6
time delay, 2-15
timed events, 5-1
time-keeping register, 2-15
timer

configurations, description, 5-1
count, 5-3
delayed on then off, 5-5
format, description, 2-15
instruction definitions, table, 5-2
maximum period, defined, 2-15
memory registers, 2-4
minimum period, defined, 2-15
off, command, 5-4
on, command, 5-5

registers, description, 2-15
registers, store state values, 2-17
registers, T Identifiers, 2-4

TIMER DELAY, 7-3
timers, description, 5-1
timing operations, 2-4
TLOBIN0, M601, 2-8
TMACEND, M26, 2-6
TOFF, 5-4
TON, command, 5-5
tool changer, 2-6
tool number, 2-6
tool position, 7-10
tool, macro end flag, 2-6
TOOLACT, 7-10
TOOLNUM, M59, 2-8
travel limit switches, 2-2
Tregisters, 6-4
Tregisters, description, 2-15
TRUE, M9, 2-5
truth tables, 4-8
two-element instructions, 4-8

U
underflow, 7-12
using, comments, 4-6
using, IPI editor, 3-3

V
value in the current register, 4-3
value in the previous register,

4-3
value or state

current register, 4-1
new element, 4-1
previous register, 4-1

vector limits, input locations, 2-2
vector limits, input type, 2-2
viewing, IPI monitor, 2-17

W
warnings

compiler, 3-6
ERR files, 3-2
loader, 3-2

warranty, iii
word values, 4-5
writing, an IPI program, 4-1

Integral Programmable Intelligence User’s Guide
P/N 70000416D - Index

All rights reserved. Subject to change without notice. Index-9
31-October-04

X
X registers, 2-18, 4-13, 4-14,

4-15, 4-16, 4-17, 4-18, 4-20,
4-23, 4-27, 4-29, 4-33, 5-3,
6-2, 6-4, 6-6, 6-8, 6-9

XHOLD, M38, 2-6
XMIT, M32, 2-6
XNR, 4-4
XOR, 4-4
XSTART, M58, 2-8, 2-12
XSTOP, M37, 2-6

Y
Y registers, 2-18, 4-13, 4-14,

4-15, 4-16, 4-17, 4-18, 4-20,
4-23, 4-25, 4-27, 4-29, 4-31,
4-32, 4-33, 5-3, 6-2, 6-4, 6-5,
6-6, 6-8, 6-9

Z
Z-axis, machine position in

microns, M27, 2-6
ZEROSPD, M28, 2-6
ZMACHPOS, M27, 2-6

P/N 70000416D
31-October-04 www.anilam.com

U.S.A.
ANILAM

One Precision Way
Jamestown, NY 14701

 (716) 661-1899
 (716) 661-1884

 anilaminc@anilam.com

ANILAM, CA
16312 Garfield Ave., Unit B

Paramount, CA 90723
 (562) 408-3334
 (562) 634-5459

 anilamla@anilam.com

Dial “011” before each number when calling
from the U.S.A.

France

ANILAM S.A.R.L.
2 Ave de la Cristallerie

B.P. 68-92316
Serves Cedex, France

 +33-1-46290061
 +33-1-45072402

 courrier@acu-rite.fr

Germany
ANILAM GmbH

Fraunhoferstrasse 1
D-83301 Traunreut

Germany
 +49 8669 856110
 +49 8669 850930
 info@anilam.de

Italy

ANILAM Elettronica s.r.l.
10043 Orbassano

Strada Borgaretto 38
Torino, Italy

 +39 011 900 2606
 +39 011 900 2466

 info@anilam.it

Taiwan
ANILAM, TW

No. 246 Chau-Fu Road
Taichung City 407

Taiwan, ROC
 +886-4 225 87222
 +886-4 225 87260

 anilamtw@anilam.com

United Kingdom
ACI (UK) Limited

16 Plover Close, Interchange Park
Newport Pagnell

Buckinghamshire, MK16 9PS
England

 +44 (0) 1908 514 500
 +44 (0) 1908 610 111
 sales@aciuk.co.uk

China

Acu-Rite Companies Inc.(Shanghai Representative Office)
Room 1986, Tower B

City Center of Shanghai
No. 100 Zunyi Lu Road

Chang Ning District
200051 Shanghai P.R.C.

 +86 21 62370398
 +86 21 62372320

 china@anilam.com

	Home - 4200T Manuals List
	Integral Programmable Intelligence User's Guide, P/N 70000416
	Warranty
	Table of Contents
	Section 1 - Introduction
	Section 2 - Software
	CAN I/O Board
	Inputs
	Outputs

	The IPI Operation Cycle
	Memory Registers
	Multifunction Registers
	M2-PRBFLAG
	M41-SPDAN0V
	M42-MREGRAN
	Displaying Multiple Ranges

	M43-SPDGRCH
	M44-CNCERR
	M46-KEYMASK
	M47-SPIN100
	M48-SPDRPM
	M49-SPDDIR
	M50-HOMING
	M51-LNFDLIM
	M52-ROFDLIM
	M53-SPDVOLT
	M54-CMDRPM
	M55-HWSTOP
	M56-AUTOINH
	M57-FEED100
	M58-XSTART

	P Registers
	General-Purpose, Multifunction Registers
	Shared Registers
	Static M-registers - M240 to M255
	Timer Registers
	Sequence Registers

	I/O Boards
	IPI Monitor
	Viewing the IPI Monitor

	Section 3 - Working with IPI
	Configuring IPI Setup
	Programming the IPI
	File Names

	Accessing Select Options Menu
	Using the IPI Editor
	Creating a New Program
	Selecting an Existing Program
	Activating the Editor
	Loading and Compiling a Program

	Optimizing the Development Cycle
	IPI File Management Soft Keys

	Section 4 - Writing IPI Programs
	How the Interpreter Uses Instructions
	Program START and END Instructions
	Building IPI Program Instructions
	Instruction Operands
	Operation Codes
	Expressions
	Numeric Parameters

	Creating Additional I/ O Labels
	Using Comments
	Finish Signal Generation
	IPI Operation Set

	Section 5 - Timers
	Timer Off (TOFF) Command
	Timer Delayed On Then Off (T) Command
	Timer On (TON) Command

	Section 6 - Advanced IPI Instructions
	IF/ ELS/ EDF Instructions
	Conditional Jumps

	Section 7 - Programming Tips and Examples
	Compiler Directives
	DEFINE Format: #DEFINE
	LIST
	MAXSIZE
	MAXSTEPS
	RANGE
	SYNTAX

	Plan the Program
	Using Labels
	Using Conditional Execution
	Using Sequence States
	Programming Examples
	Program 1 - Basic IPI Example
	Program 2 - Binary Encoder Example
	Program 3 - Binary Decoder Example
	Program 4 - Single- Shot Pulse/ Simple Counters Example
	Program 5 - IPI Example

	Index
	Back Cover

